Integrating High-Throughput Pyrosequencing and Quantitative Real-Time PCR to Analyze Complex Microbial Communities

  • Husen Zhang
  • Prathap Parameswaran
  • Jonathan Badalamenti
  • Bruce E. Rittmann
  • Rosa Krajmalnik-Brown
Part of the Methods in Molecular Biology book series (MIMB, volume 733)


New high-throughput technologies continue to emerge for studying complex microbial communities. In particular, massively parallel pyrosequencing enables very high numbers of sequences, providing a more complete view of community structures and a more accurate inference of the functions than has been possible just a few years ago. In parallel, quantitative real-time PCR (QPCR) allows quantitative monitoring of specific community members over time, space, or different environmental conditions. In this review, we discuss the principles of these two methods and their complementary applications in studying microbial ecology in bioenvironmental systems. We explain parallel sequencing of amplicon libraries and using bar codes to differentiate multiple samples in a pyrosequencing run. We also describe best procedures and chemistries for QPCR amplifications and address advantages of applying automation to increase accuracy. We provide three examples in which we used pyrosequencing and QPCR together to define and quantify members of microbial communities: in the human large intestine, in a methanogenic digester whose sludge was made more bioavailable by a high-voltage pretreatment, and on the biofilm anode of a microbial electrolytic cell. We highlight our key findings in these systems and how both methods were used in concert to achieve those findings. Finally, we supply detailed methods for generating PCR amplicon libraries for pyrosequencing, pyrosequencing data analysis, QPCR methodology, instrumentation, and automation.

Key words

Microbial ecology Pyrosequencing Quantitative PCR Methanogenesis Microbial fuel cell Human intestine Obesity Acetogenesis 


  1. 1.
    Rittmann, B. E., Hausner, M., Loffler, F., Love, N. G., Muyzer, G., Okabe, S., et al. (2006) A vista for microbial ecology and environmental biotechnology. Environ. Sci. Technol. 40, 1096  –1103.PubMedCrossRefGoogle Scholar
  2. 2.
    Rittmann, B. E., Krajmalnik-Brown, R., and Halden, R. U. (2008) Pre-genomic, genomic and post-genomic study of microbial communities involved in bioenergy. Nat. Rev. Microbiol. 6, 604  –612.PubMedCrossRefGoogle Scholar
  3. 3.
    Coates, J. D., Michaelidou, U., Bruce, R. A., O’Connor, S. M., Crespi, J. N., and Achenbach, L. A. (1999) Ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria. Appl. Environ. Microbiol. 65, 5234  –5241.PubMedGoogle Scholar
  4. 4.
    Wu, J., Unz, R. F., Zhang, H., and Logan, B. E. (2001) Persistence of perchlorate and the relative numbers of perchlorate- and chlorate-respiring microorganisms in natural waters, soils, and wastewater. Biorem. J. 5, 119–130.CrossRefGoogle Scholar
  5. 5.
    Hugenholtz, P., Goebel, B. M., and Pace, N. R. (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180, 4765–  4774.PubMedGoogle Scholar
  6. 6.
    Amann, R. I., Ludwig, W., and Schleifer, K. H. (1995) Phylogenetic identification and in-situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143  –169.PubMedGoogle Scholar
  7. 7.
    Zhang, H., DiBaise, J. K., Zuccolo, A., Kudrna, D., Braidotti, M., Yu, Y., et al. (2009) Human gut microbiota in obesity and after gastric-bypass. Proc. Natl. Acad. Sci. U. S. A. 106, 2365  –  2370.PubMedCrossRefGoogle Scholar
  8. 8.
    Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., et al. (2005) Diversity of the human intestinal microbial flora. Science 308, 1635  –1638.PubMedCrossRefGoogle Scholar
  9. 9.
    Hugenholtz, P., and Tyson, G. W. (2008) Microbiology - Metagenomics. Nature 455, 481–  483.PubMedCrossRefGoogle Scholar
  10. 10.
    Jones, R. T., Robeson, M. S., Lauber, C. L., Hamady, M., Knight, R., and Fierer, N. (2009) A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J. 3,442–  453.PubMedCrossRefGoogle Scholar
  11. 11.
    Hamady, M., Walker, J. J., Harris, J. K., Gold, N. J., and Knight, R. (2008) Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat. Methods 5, 235  –  237.PubMedCrossRefGoogle Scholar
  12. 12.
    Suzuki, M. T., Taylor, L. T., and DeLong, E. F. (2000) Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Appl. Environ. Microbiol. 66, 4605–  4614.PubMedCrossRefGoogle Scholar
  13. 13.
    Yu, Y., Lee, C., Kim, J., and Hwang, S. (2005) Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol. Bioeng. 89, 670  –  679.PubMedCrossRefGoogle Scholar
  14. 14.
    Ritalahti, K. M., Amos, B. K., Sung, Y., Wu, Q., Koenigsberg, S. S., and Loffler, F. E. (2006) Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Appl. Environ. Microbiol. 72, 2765  –2774.PubMedCrossRefGoogle Scholar
  15. 15.
    Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., et al. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376  –380.PubMedGoogle Scholar
  16. 16.
    Gharizadeh, B., Kalantari, M., Garcia, C. A., Johansson, B., and Nyren, P. (2001) Typing of human papillomavirus by pyrosequencing. Lab. Invest. 81, 673  –  679.PubMedCrossRefGoogle Scholar
  17. 17.
    Zhang, T., and Fang, H. H. (2006) Applications of real-time polymerase chain reaction for quantification of microorganisms in environmental samples. Appl. Microbiol. Biotechnol. 70, 281–289.PubMedCrossRefGoogle Scholar
  18. 18.
    Talbot, G., Topp, E., Palin, M. F., and Masse, D. I. (2008) Evaluation of molecular methods used for establishing the interactions and functions of microorganisms in anaerobic bioreactors. Water Res. 42, 513  –537.PubMedCrossRefGoogle Scholar
  19. 19.
    Rittmann, B. E., Lee, H. S., Zhang, H., Alder, J., Banazak, J. E., and Lopez, R. (2008) Full-scale application of Focused-Pulsed pre-treatment for improving biosolids digestion and conversion to methane. Water Sci. Technol. 58, 1895  –1901.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang, H., Banaszak, J. E., Parameswaran, P., Alder, J., Krajmalnik-Brown, R., and Rittmann, B. E. (2009) Focused-Pulsed sludge pre-treatment increases the bacterial diversity and relative abundance of acetoclastic methanogens in a full-scale anaerobic digester. Water Res. 43, 4517–  4526.PubMedCrossRefGoogle Scholar
  21. 21.
    Parameswaran, P., Zhang, H., Torres, C. I., Rittmann, B. E., and Krajmalnik-Brown, R. (2009) Microbial community structure in a biofilm anode fed with a fermentable substrate: The significance of hydrogen scavengers. Biotechnol. Bioeng. In press.Google Scholar
  22. 22.
    Parameswaran, P., Torres, C. I., Lee, H. S., Krajmalnik-Brown, R., and Rittmann, B. E. (2009) Syntrophic interactions among anode respiring bacteria (ARB) and non-ARB in a biofilm anode: electron balances. Biotechnol. Bioeng. 103, 513–  523.PubMedCrossRefGoogle Scholar
  23. 23.
    Liu, H., Cheng, S., and Logan, B. E. (2005) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ. Sci. Technol. 39, 658–  662.PubMedCrossRefGoogle Scholar
  24. 24.
    Jung, S. and Regan, J. M. (2007) Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Appl. Microbiol. Biotechnol. 77, 393  –  402.PubMedCrossRefGoogle Scholar
  25. 25.
    Torres, C. I., Marcus, A. K., Parameswaran, P., and Rittmann, B. E. (2008) Kinetic experiments for evaluating the Nernst-Monod model for anode-respiring bacteria (ARB) in a biofilm anode. Environ. Sci. Technol. 42, 6593  –  6597.PubMedCrossRefGoogle Scholar
  26. 26.
    Lee, H. S., Parameswaran, P., Kato-Marcus, A., Torres, C. I., and Rittmann, B. E. (2008) Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Res. 42, 1501–1510.PubMedCrossRefGoogle Scholar
  27. 27.
    Logan, B. E. (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 7, 375  –381.PubMedCrossRefGoogle Scholar
  28. 28.
    Neefs, J. M., Vandepeer, Y., Hendriks, L., and Dewachter, R. (1990) Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res. 18, 2237–2317.PubMedCrossRefGoogle Scholar
  29. 29.
    Turnbaugh, P. J., Hamady, M., Yatsunenko, T., Cantarel, B. L., Duncan, A., Ley, R. E., et al. (2009) A core gut microbiome in obese and lean twins. Nature 457, 480  –  484.PubMedCrossRefGoogle Scholar
  30. 30.
    Dethlefsen, L., Huse, S., Sogin, M. L., and Relman, D. A. (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 6, e280.PubMedCrossRefGoogle Scholar
  31. 31.
    Claesson, M. J., O’Sullivan, O., Wang, Q., Nikkila, J., Marchesi, J. R., Smidt, H., et al. (2009) Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS One 4, e6669.PubMedCrossRefGoogle Scholar
  32. 32.
    Sogin, M. L., Morrison, H. G., Huber, J. A., Mark Welch, D., Huse, S. M., Neal, P. R., et al. (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl. Acad. Sci. U. S. A. 103, 12115  –12120.PubMedCrossRefGoogle Scholar
  33. 33.
    Huber, J. A., Mark Welch, D., Morrison, H. G., Huse, S. M., Neal, P. R., Butterfield, D. A., et al. (2007) Microbial population structures in the deep marine biosphere. Science 318, 97–100.PubMedCrossRefGoogle Scholar
  34. 34.
    Quince, C., Lanzen, A., Curtis, T. P., Davenport, R. J., Hall, N., Head, I. M., et al. (2009) Accurate determination of microbial diversity from 454 pyrosequencing data. Nat. Methods 6, 639  –  641.PubMedCrossRefGoogle Scholar
  35. 35.
    Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., et al. (2009) Introducing mothur: open source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol., doi:AEM.01541–  01509.PubMedGoogle Scholar
  36. 36.
    Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R. (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–  5267.PubMedCrossRefGoogle Scholar
  37. 37.
    Huse, S. M., Dethlefsen, L., Huber, J. A., Mark Welch, D., Relman, D. A., and Sogin, M. L. (2008) Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet. 4, e1000255.PubMedCrossRefGoogle Scholar
  38. 38.
    Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J. H., Zhang, Z., Miller, W., et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389  –3402.PubMedCrossRefGoogle Scholar
  39. 39.
    Edgar, R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797.PubMedCrossRefGoogle Scholar
  40. 40.
    Felsenstein, J. (2004) PHYLIP (Phylogeny Inference Package) version 3.6. Department of Genome Sciences, University of Washington, Seattle. Distributed by the author.Google Scholar
  41. 41.
    Schloss, P. D. and Handelsman, J. (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol. 71, 1501–1506.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Husen Zhang
  • Prathap Parameswaran
  • Jonathan Badalamenti
  • Bruce E. Rittmann
  • Rosa Krajmalnik-Brown
    • 1
  1. 1.Center for Environmental Biotechnology, Biodesign InstituteArizona State UniversityTempeUSA

Personalised recommendations