Global Estimation of mRNA Stability in Yeast

  • Julia Marín-Navarro
  • Alexandra Jauhiainen
  • Joaquín Moreno
  • Paula Alepuz
  • José E. Pérez-Ortín
  • Per Sunnerhagen
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 734)

Abstract

Turnover of mRNA is an important level of gene regulation. Individual mRNAs have different intrinsic stabilities. Moreover, mRNA stability changes dynamically with conditions such as hormonal stimulation or cellular stress. While accurate methods exist to measure the half-life of an individual transcript, global methods to estimate mRNA turnover have limitations in terms of resolution in time and precision. We describe and compare two complementary approaches to estimating global transcript stability: (1) direct measurement of decay rates; (2) indirect estimation of turnover from determination of mRNA synthesis rates and steady-state levels. Since the two approaches have distinct strengths yet confer different cellular perturbations, it is valuable to consider results obtained with both methods. The practical aspects of the chapter are written from a yeast perspective; the general considerations hold true for all eukaryotes, however.

Key words

1-10-Phenanthroline Microarray Exponential decay Transcription 

Notes

Acknowledgments

Work in the authors’ laboratories is supported by grants from the Spanish MEC (BIO2007-67708-C04-02) and MiCInn (BFU2009-11965, BFU2008-02114, BFU2007-67575-C03-01/BMC), and by the Swedish Research Council (2007-5460).

References

  1. 1.
    Nonet, M., Scafe, C., Sexton, J., and Young, R. (1987) Eucaryotic RNA polymerase conditional mutant that rapidly ceases mRNA synthesis. Mol Cell Biol 7, 1602–11.Google Scholar
  2. 2.
    Grigull, J., Mnaimneh, S., Pootoolal, J., Robinson, M. D., and Hughes, T. R. (2004) Genome-wide analysis of mRNA stability using transcription inhibitors and microarrays reveals posttranscriptional control of ribosome biogenesis. factors. Mol Cell Biol 24, 5534–47.Google Scholar
  3. 3.
    Molina-Navarro, M. M., Castells-Roca, L., Bellí, G., García-Martínez, J., Marín-Navarro, J., Moreno, J., Pérez-Ortín, J. E., and Herrero, E. (2008) Comprehensive transcriptional analysis of the oxidative response in yeast. J Biol Chem 283, 17908–18.Google Scholar
  4. 4.
    Romero-Santacreu, L., Moreno, J., Pérez-Ortín, J. E., and Alepuz, P. (2009) Specific and global regulation of mRNA stability during osmotic stress in Saccharomyces cerevisiae. RNA 15, 1110–20.Google Scholar
  5. 5.
    Molin, C., Jauhiainen, A., Warringer, J., Nerman, O., and Sunnerhagen, P. (2009) mRNA stability changes precede changes in steady-state mRNA amounts during hyperosmotic stress. RNA 15, 600–14.Google Scholar
  6. 6.
    Bernstein, J. A., Khodursky, A. B., Lin, P. H., Lin-Chao, S., and Cohen, S. N. (2002) Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc Natl Acad Sci U S A 99, 9697–702.Google Scholar
  7. 7.
    Hundt, S., Zaigler, A., Lange, C., Soppa, J., and Klug, G. (2007) Global analysis of mRNA decay in Halobacterium salinarum NRC-1 at single-gene resolution using DNA microarrays. J Bacteriol 189, 6936–44.Google Scholar
  8. 8.
    Andersson, A. F., Lundgren, M., Eriksson, S., Rosenlund, M., Bernander, R., and Nilsson, P. (2006) Global analysis of mRNA stability in the archaeon Sulfolobus. Genome Biol 7, R99.Google Scholar
  9. 9.
    Smyth, G. K. (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3, Article 3.Google Scholar
  10. 10.
    García-Martínez, J., Aranda, A., and Pérez-Ortín, J. E. (2004) Genomic run-on evaluates transcription rates for all yeast genes and identifies gene regulatory mechanisms. Mol Cell 15, 303–13.Google Scholar
  11. 11.
    Pérez-Ortín, J. E., Alepuz, P. M., and Moreno, J. (2007) Genomics and gene transcription kinetics in yeast. Trends Genet 23, 250–7.Google Scholar
  12. 12.
    Pelechano, V., and Pérez-Ortín, J. E. (2010) There is a steady state transcriptome in exponentially growing yeast cells. Yeast 27, 413–22.Google Scholar
  13. 13.
    Tu, B. P., Kudlicki, A., Rowicka, M., and McKnight, S. L. (2005) Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 310, 1152–8.Google Scholar
  14. 14.
    Reinke, H., and Gatfield, D. (2006) Genome-wide oscillation of transcription in yeast. Trends Biochem Sci 31, 189–91.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Julia Marín-Navarro
  • Alexandra Jauhiainen
  • Joaquín Moreno
  • Paula Alepuz
  • José E. Pérez-Ortín
  • Per Sunnerhagen
    • 1
  1. 1.Department of Cell and Molecular Biology, Lundberg LaboratoryUniversity of GothenburgGothenburgSweden

Personalised recommendations