cDNA Libraries pp 199-210 | Cite as

Construction of Yeast Surface-Displayed cDNA Libraries

Part of the Methods in Molecular Biology book series (MIMB, volume 729)


Using yeast display, heterologous protein fragments can be efficiently displayed at high copy levels on the Saccharomyces cerevisiae cell wall. Yeast display can be used to screen large expressed protein libraries for proteins or protein fragments with specific binding properties. Recently, yeast surface-displayed cDNA libraries have been constructed and used to identify proteins that bind to various target molecules such as peptides, small molecules, and antibodies. Because yeast protein expression pathways are similar to those found in mammalian cells, human protein fragments displayed on the yeast cell wall are likely to be properly folded and functional. Coupled with fluorescence-activated cell sorting, yeast surface-displayed cDNA libraries potentially allow the selection of protein fragments or domains with affinity for any soluble molecule that can be fluorescently detected. In this report, we describe protocols for the construction and validation of yeast surface-displayed cDNA libraries using preexisting yeast two-hybrid cDNA libraries as a starting point.

Key words

Yeast Surface cDNA display Library 



The work is supported by grants from the National Institute of Health (R01 CA118919, R01 CA129491, R21 CA137429, and R21 CA135586).


  1. 1.
    Fields, S., and Sternglanz, R. (1994) The two-hybrid system: an assay for protein–protein interactions. Trends Genet. 10, 286–292.PubMedCrossRefGoogle Scholar
  2. 2.
    Rhyner, C., Kodzius, R., and Crameri, R. (2002) Direct selection of cDNAs from filamentous phage surface display libraries: potential and limitations. Curr. Pharm. Biotechnol. 3, 13–21.PubMedCrossRefGoogle Scholar
  3. 3.
    Sidhu, S. S., Fairbrother, W. J., and Deshayes, K. (2003) Exploring protein–protein interactions with phage display. Chembiochem. 4, 14–25.PubMedCrossRefGoogle Scholar
  4. 4.
    Crameri, R., Achatz, G., Weichel, M., and Rhyner, C. (2002) Direct selection of cDNAs by phage display. Methods Mol. Biol. 185, 461–469.PubMedGoogle Scholar
  5. 5.
    Danner, S., and Belasco, J. G. (2001) T7 phage display: a novel genetic selection system for cloning RNA-binding proteins from cDNA libraries. Proc. Natl. Acad. Sci. U S A 98, 12954–12959.PubMedCrossRefGoogle Scholar
  6. 6.
    Kurakin, A., Wu, S., and Bredesen, D. E. (2004) Target-assisted iterative screening of phage surface display cDNA libraries. Methods Mol. Biol. 264, 47–60.PubMedGoogle Scholar
  7. 7.
    Zucconi, A., Dente, L., Santonico, E., Castagnoli, L., and Cesareni, G. (2001) Selection of ligands by panning of domain libraries displayed on phage lambda reveals new potential partners of synaptojanin 1. J. Mol. Biol. 307, 1329–1339.PubMedCrossRefGoogle Scholar
  8. 8.
    Cicchini, C., Ansuini, H., Amicone, L., Alonzi, T., Nicosia, A., Cortese, R., Tripodi, M., and Luzzago, A. (2002) Searching for DNA–protein interactions by lambda phage display. J. Mol. Biol. 322, 697–706.PubMedCrossRefGoogle Scholar
  9. 9.
    Guo, D., Hazbun, T. R., Xu, X. J., Ng, S. L., Fields, S., and Kuo, M. H. (2004) A tethered catalysis, two-hybrid system to identify ­protein–protein interactions requiring post-translational modifications. Nat. Biotechnol. 22, 888–892.PubMedCrossRefGoogle Scholar
  10. 10.
    Boder, E. T., and Wittrup, K. D. (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 5, 553–557.CrossRefGoogle Scholar
  11. 11.
    Cochran, J. R., Kim, Y. S., Olsen, M.J., Bhandari, R., and Wittrup, K. D. (2004) Domain-level antibody epitope mapping through yeast surface display of epidermal growth factor receptor fragments. J. Immunol. Methods 287, 147–158.PubMedCrossRefGoogle Scholar
  12. 12.
    Feldhaus, M. J., Siegel, R. W., Opresko, L. K., Coleman, J. R., Feldhaus, J. M., Yeung, Y. A., Cochran, J. R., Heinzelman, P., Colby, D., Swers, J., Graff, C., Wiley, H. S., and Wittrup, K. D. (2003) Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat. Biotechnol. 21, 163–170.PubMedCrossRefGoogle Scholar
  13. 13.
    Bidlingmaier, S., and Liu, B. (2006) Construction and application of a yeast surface-displayed human cDNA library to identify post-translational modification-dependent protein–protein interactions. Mol. Cell Proteomics. 5, 533–540.PubMedGoogle Scholar
  14. 14.
    Bidlingmaier, S., and Liu, B. (2007) Interrogating yeast surface-displayed human proteome to identify small molecule-binding proteins. Mol. Cell Proteomics. 6, 2012–2020.PubMedCrossRefGoogle Scholar
  15. 15.
    Bidlingmaier, S., He, J., Wang, Y., An, F., Feng, J., Barbone, D., Gao, D., Franc, B., Broaddus, V. C., and Liu, B. (2009) Identification of MCAM/CD146 as the target antigen of a human monoclonal antibody that recognizes both epithelioid and sarcomatoid types of mesothelioma. Cancer Res. 69, 1570–1577.PubMedCrossRefGoogle Scholar
  16. 16.
    Wadle, A., Mischo, A., Imig, J., Wüllner, B., Hensel, D., Wätzig, K., Neumann, F., Kubuschok, B., Schmidt, W., Old, L. J., Pfreundschuh, M., and Renner, C. (2005) Serological identification of breast cancer-related antigens from a Saccharomyces cerevisiae surface display library. Int. J. Cancer 117, 104–113.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.UCSF Comprehensive Cancer CenterUniversity of California at San FranciscoSan FranciscoUSA
  2. 2.Department of Anesthesia, UCSF Comprehensive Cancer CenterUniversity of California at San FranciscoSan FranciscoUSA

Personalised recommendations