Advertisement

Methodological Aspects of Multicenter Studies with Quantitative PET

  • Ronald Boellaard
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 727)

Abstract

Quantification of whole-body FDG PET studies is affected by many physiological and physical factors. Much of the variability in reported standardized uptake value (SUV) data seen in the literature results from the variability in methodology applied among these studies, i.e., due to the use of different scanners, acquisition and reconstruction settings, region of interest strategies, SUV normalization, and/or corrections methods. To date, the variability in applied methodology prohibits a proper comparison and exchange of quantitative FDG PET data. Consequently, the promising role of quantitative PET has been demonstrated in several monocentric studies, but these published results cannot be used directly as a guideline for clinical (multicenter) trials performed elsewhere. In this chapter, the main causes affecting whole-body FDG PET quantification and strategies to minimize its inter-institute variability are addressed.

Key words

PET Multicenter Standardization Quantification FDG SUV Standardized uptake value 

Notes

Acknowledgments

The author would like to thank Paul Kinahan, Osama Malawi, and Janet Saffer for their fruitful discussions. Adriaan Lammertsma and Otto Hoekstra are thanked for reviewing this paper and for the many helpful discussions on PET quantification. The members of the HOVON imaging workgroup are thanked for their contribution in setting up a Dutch FDG PET standardization protocol.

References

  1. 1.
    Fletcher, J.W., Djulbegovic, B., Soares, H.P., Siegel, B.A., Lowe, V.J., Lyman, G.H. et al. (2008) Recommendations on the use of F-18-FDG PET in oncology. J Nucl Med 49(3), 480–508.PubMedCrossRefGoogle Scholar
  2. 2.
    Hoekstra, C.J., Stroobants, S.G., Hoekstra, O.S., Vansteenkiste, J., Biesma, B., Schramel, F.J., et al. (2003) The value of [18F]fluoro-2-deoxy-D-glucose positron emission tomography in the selection of patients with stage IIIA-N2 non-small cell lung cancer for combined modality treatment. Lung Cancer 39(2), 151–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Mijnhout, G.S., Borgstein, P.J., Hoekstra, O.S., van Diest, P.J., Pijpers, R., Meijer, S., et al. (1999) Potential value of FDG-PET for initial regional staging in melanoma. J Invest Dermatol 113(3), 514.Google Scholar
  4. 4.
    van Tinteren, H., Hoekstra, O.S., Smit, E.F., van den Bergh, J.H., Schreurs, A.J., Stallaert, R.A., et al. (2002) Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer: the PLUS multicentre randomised trial Lancet 359(9315), 1388–92.PubMedCrossRefGoogle Scholar
  5. 5.
    Vansteenkiste, J.F., Stroobants, S.G. (2001) The role of positron emission tomography with 18F-fluoro-2-deoxy-D-glucose in respiratory oncology. Eur Respir J 17(4), 802–20.PubMedCrossRefGoogle Scholar
  6. 6.
    Weber, W.A. (2006) Positron emission tomography as an imaging biomarker J Clin Oncol 24(20), 3282–92.PubMedCrossRefGoogle Scholar
  7. 7.
    Zijlstra-Baalbergen, J.M., Hoekstra, O.S., Raaymakers, P.R., Comans, E.F., Huijgens, P.C., Hoeven, J.J., et al. (2000) FDG PET vs Ga-67 scintigraphy as a prognostic tool early during chemotherapy for non-Hodgkin’s lymphoma (NHL). J Nucl Med 41(5), 278PGoogle Scholar
  8. 8.
    Avril, N.E., Weber, W.A. (2005) Monitoring response to treatment in patients utilizing PET Radiol Clin North Am 43(1), 189–204.PubMedCrossRefGoogle Scholar
  9. 9.
    Borst, G., Belderbos, J., Boellaard, R., Comans, E., de Jaeger, K., Lammertsma, A., et al. (2005) Prognostic significance of the 18FDG-PET standardized uptake value for inoperable non-small cell lung cancer patients after high-dose radiotherapy. Lung Cancer 49, S50.CrossRefGoogle Scholar
  10. 10.
    Hoekstra, C.J., Paglianiti, I., Hoekstra, O.S., Smit, E.F., Postmus, P.E., Teule, G.J., et al. (2000) Monitoring response to therapy in cancer using [F-18]-2-fluouo-2-deoxy-D-glucose and positron emission tomography: an overview of different analytical methods. Eur J Nucl Med 27(6), 731–43.PubMedCrossRefGoogle Scholar
  11. 11.
    Larson, S.M., Schwartz, L.H. (2006) 18F-FDG PET as a candidate for “qualified biomarker”: functional assessment of treatment response in oncology. J Nucl Med 47(6), 901–3.PubMedGoogle Scholar
  12. 12.
    Weber, W.A.(2005) PET for response assessment in oncology: radiotherapy and chemotherapy Br J Radiol 78, 42–9.Google Scholar
  13. 13.
    Graham, M.M., Peterson, L.M., Hayward, R.M. (2000) Comparison of simplified quantitative analyses of FDG uptake Nucl Med Biol 27(7), 647–55.PubMedCrossRefGoogle Scholar
  14. 14.
    Hoekstra, C.J., Hoekstra, O.S., Stroobants, S.G., Vansteenkiste, J., Nuyts, J., Smit, E.F., et al. (2002) Methods to monitor response to chemotherapy in non-small cell lung cancer with F-18-FDG PET. J Nucl Med 43(10), 1304–9.PubMedGoogle Scholar
  15. 15.
    Hoekstra, C.J., Hoekstra, O.S., Lammertsma, A.A. (1999) On the use of image-derived input functions in oncological fluorine-18 fluorodeoxyglucose positron emission tomography studies. Eur J Nucl Med 26(11), 1489–92.PubMedCrossRefGoogle Scholar
  16. 16.
    Boellaard, R., Krak, N.C., Hoekstra, O.S., Lammertsma, A.A. (2004) Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: A simulation study. J Nucl Med 45(9), 1519–27.PubMedGoogle Scholar
  17. 17.
    Krak, N.C., Boellaard, R., Hoekstra, O.S., Twisk, J.W.R., Hoekstra, C.J., Lammertsma, A.A. (2005) Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial Eur J Nucl Med Mol Imaging 32(3), 294–301.PubMedCrossRefGoogle Scholar
  18. 18.
    Shankar, L.K., Hoffman, J.M., Bacharach, S., Graham, M.M., Karp, J., Lammertsma, A.A., et al. (2006) Consensus recommendations for the use of F-18-FDG PET as an indicator of therapeutic response in patients in national cancer institute trials. J Nucl Med 47(6), 1059–66.PubMedGoogle Scholar
  19. 19.
    Stahl, A., Ott, K., Schwaiger, M., Weber, W.A. (2004) Comparison of different SUV-based methods for monitoring cytotoxic therapy with FDG PET Eur J Nucl Med Mol Imaging 31(11), 1471–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Weber, W.A. (2005) Use of PET for monitoring cancer therapy and for predicting outcome J Nucl Med 46(6), 983–95.PubMedGoogle Scholar
  21. 21.
    Boellaard, R., Oyen, W.J., Hoekstra, C.J., Hoekstra, O.S., Visser, E.P., Willemsen, A.T., et al. (2008) The Netherlands protocol for standardisation and quantification of FDG whole body PET studies in multi-centre trials Eur J Nucl Med Mol Imaging 35(12), 2320–33PubMedCrossRefGoogle Scholar
  22. 22.
    Visvikis, D., Cheze-LeRest, C., Costa, D.C., Bomanji, J., Gacinovic, S., Ell, P.J. (2001) Influence of OSEM and segmented attenuation correction in the calculation of standardised uptake values for [18F]FDG PET. Eur J Nucl Med 28(9), 1326–35.PubMedCrossRefGoogle Scholar
  23. 23.
    Aerts, H.J., Bosmans, G., van Baardwijk, A.A., Dekker, A.L., Oellers, M.C., Lambin, P., et al. (2008) Stability of (18)F-Deoxyglucose uptake locations within tumor during radiotherapy for NSCLC: a prospective study. Int J Radiat Oncol Biol Phys 71(5), 1402–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Westerterp, M., Pruim, J., Oyen, W., Hoekstra, O., Paans, A., Visser, E., et al. (2007) Quantification of FDG PET studies using standardised uptake values in multi-centre trials: effects of image reconstruction, resolution and ROI definition parameters. Eur J Nucl Med Mol Imaging 34(3), 392–404.PubMedCrossRefGoogle Scholar
  25. 25.
    Delbeke, D. (2006) Procedure guideline for tumor imaging with F-18-FDG PET/CT 1.0 J Nucl Med 47(5), 885–95. Erratum in J Nucl Med 47(6), 903.Google Scholar
  26. 26.
    Juweid, M.E., Stroobants, S., Hoekstra, O.S., Mottaghy, F.M., Dietlein, M., Guermazi, A., et al. (2007) Use of positron emission tomography for response assessment of lymphoma: Consensus of the Imaging Subcommittee of International Harmonization Project in lymphoma J Clin Oncol 25(5), 571–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Shankar, L.K. (2006) PET standardization, NIH findings: The importance of standardization of imaging in clinical trials J Nucl Med 47(12), 57N–58N.Google Scholar
  28. 28.
    Young, H., Baum, R., Cremerius, U., Herholz, K., Hoekstra, O., Lammertsma, A.A., et al. (1999) Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group Eur J Cancer 35(13), 1773–82.PubMedCrossRefGoogle Scholar
  29. 29.
    Schelbert, H.R., Hoh, C.K., Royal, H.D., Brown, M., Dahlbom, M.N., Dehdashti, F., et al. (1998) Procedure guideline for tumor imaging using fluorine-18-FDG. Society of Nuclear Medicine J Nucl Med 39(7), 1302–5.PubMedGoogle Scholar
  30. 30.
    Geworski, L., Knoop, B.O., de Wit, M., Ivancevic, V., Bares, R., Munz, D.L. (2002) Multicenter comparison of calibration and cross calibration of PET scanners J Nucl Med 43(5), 635–9.PubMedGoogle Scholar
  31. 31.
    Thie, J.A. (2004) Understanding the standardized uptake value, its methods, and implications for usage. J Nucl Med 45(9), 1431–4.PubMedGoogle Scholar
  32. 32.
    Takahashi, Y., Oriuchi, N., Otake, H., Endo, K., Murase, K. (2008) Variability of lesion detectability and standardized uptake value according to the acquisition procedure and reconstruction among five PET scanners Ann Nucl Med 22(6), 543–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Jaskowiak, C.J., Bianco, J.A., Perlman, S.B., Fine, J.P. (2005) Influence of reconstruction iterations on F-18-FDG PET/CT standardized uptake values. J Nucl Med 46(3), 424–8.PubMedGoogle Scholar
  34. 34.
    Lodge, M., Leal, J., Wahl, R. (2008) Quantifying metabolic tumor response to therapy: The influence of image noise on maximum and mean SUV J Nucl Med 49, 108P.CrossRefGoogle Scholar
  35. 35.
    Leal, J., Lodge, M., Wahl, R. (2008) Reproducibility of SUV max for oncologic PET: Significant differences in quantification of the SAME study between PET-only and PET-CT analysis modes J Nucl Med 49, 107P.Google Scholar
  36. 36.
    Boellaard, R., Hoekstra, O.S., Lammertsma, A.A. (2008) Software tools for standardized analysis of FDG whole body studies in multi-center trials J Nucl Med 49, 159P.Google Scholar
  37. 37.
    Hoekstra, C.J., Stroobants, S.G., Smit, E.F., Vansteenkiste, J., van Tinteren, H., Postmus, P.E., et al. (2005) Prognostic relevance of response evaluation using [F-18]-2-fluoro-2-deoxy-D-glucose positron emission tomography in patients with locally advanced non-small-cell lung cancer J Clin Oncol 23(33), 8362–70.PubMedCrossRefGoogle Scholar
  38. 38.
    Lammertsma, A.A., Hoekstra, C.J., Giaccone, G., Hoekstra, O.S. (2006) How should we analyse FDG PET studies for monitoring tumour response Eur J Nucl Med Mol Imaging 33, S16–S21.CrossRefGoogle Scholar
  39. 39.
    Hunter, G.J., Hamberg, L.M., Alpert, N.M., Choi, N.C., Fischman, A.J. (1996) Simplified measurement of deoxyglucose utilization rate J Nucl Med 37(6), 950–5.PubMedGoogle Scholar
  40. 40.
    Sadato, N., Tsuchida, T., Nakaumra, S., Waki, A., Uematsu, H., Takahashi, N., et al. (1998) Non-invasive estimation of the net influx constant using the standardized uptake value for quantification of FDG uptake of tumours Eur J Nucl Med 25(6), 559–64.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2011

Authors and Affiliations

  1. 1.Department of Nuclear Medicine & PET ResearchVU University Medical CentreAmsterdamThe Netherlands

Personalised recommendations