Formalin-Fixed Paraffin-Embedded Tissues pp 147-160

Part of the Methods in Molecular Biology book series (MIMB, volume 724)

Microarray Profiling of DNA Extracted from FFPE Tissues Using SNP 6.0 Affymetrix Platform

  • Marianne Tuefferd
  • An de Bondt
  • Ilse Van den Wyngaert
  • Willem Talloen
  • Hinrich Göhlmann


High-density oligonucleotide microarrays are commonly used for GWAS studies as well as for tumor genome alteration identifications. The recent Affymetrix Genome-Wide SNP 6.0 microarray generation has two major advantages: (1) showing high genome coverage and (2) starting with very small amount of DNA material. The hybridization protocol needs to be standardized and highly reproducible, as DNA is first digested by restriction enzymes and then PCR-amplified to reduce genome complexity. Especially the restriction digestion step is highly sensitive to degradation of the initial material. The stronger the sample is degraded, the lower the number of restriction sites still present in the genome, and hence the less-efficient amplification step.

Paraffin-embedded material generally only allows to extract partially degraded DNA, and therefore is difficult to analyze using SNP array technology. We and others (Jacobs et al., Cancer Res 67:2544–2551, 2007; Tuefferd et al., Genes Chromosomes Cancer 47:957–964, 2008) have shown that target preparation protocol can be adjusted to improve hybridization performances. The final in silico data analysis procedure should be modified accordingly to extract most of the biological information from the signal measured. By optimizing these crucial steps, it is possible to use Affymetrix SNP array 6.0 ­technology in the context of genome variation, even for FFPE partially degraded material. This opens a lot of potential for large retrospective series of samples.

Key words

Oligonucleotide microarrays Single-nucleotide polymorphisms Copy number alterations PCR amplification Restriction enzyme Fragment length Data analysis 


  1. 1.
    Kennedy, G.C., Matsuzaki, H., Dong, S., Liu, W.M., Huang, J., Liu, G., et al. (2003) Large-scale genotyping of complex DNA. Nat. Biotechnol. 21, 1233–1237.PubMedCrossRefGoogle Scholar
  2. 2.
    Affymetrix® Genome-Wide Human SNP Nsp/Sty 6.0 User Guide,
  3. 3.
    Tuefferd, M., De Bondt, A., Van Den Wyngaert, I., Talloen, W., Verbeke, T., Carvalho, B., et al. (2008) Genome-wide copy number alterations detection in fresh frozen and matched FFPE samples using SNP 6.0 arrays. Genes Chromosomes Cancer 47, 957–964.PubMedCrossRefGoogle Scholar
  4. 4.
    GeneChip® Mapping 500K Assay Manual,
  5. 5.
    Korn, J.M., Kuruvilla, F.G., McCarroll, S.A., Wysoker, A., Nemesh, J., Cawley, S., et al. (2008) Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs. Nat. Genet. 40, 1253–1260.PubMedCrossRefGoogle Scholar
  6. 6.
    Carvalho, B., Louis, T.A., and Irizarry, R.A. (2010) Quantifying uncertainty in genotype calls. Bioinformatics 26, 242–249.PubMedCrossRefGoogle Scholar
  7. 7.
    Nannya, Y.M., Sanada, K., Nakazaki, N., Hosoya, L., Wang, A., Hangaishi, M., et al. (2005) A robust algorithm for copy number detection using high-density oligonucleotide single nucleotide polymorphism genotyping arrays. Cancer Res. 65, 6071–6079.PubMedCrossRefGoogle Scholar
  8. 8.
    Jacobs, S., Thompson, E.R., Nannya, Y., Yamamoto, G., Pillai, R., Ogawa, S., et al. (2007) Genome-wide, high-resolution detection of copy number, loss of heterozygosity, and genotypes from formalin-fixed, paraffin-embedded tumour tissue using microarrays. Cancer Res. 67, 2544–2551.PubMedCrossRefGoogle Scholar
  9. 9.
    Lin, M., Wei, L.J., Sellers, W.R., Lieberfarb, M., Wong, W.H., and Li, C. (2004) dChipSNP: significance curve and clustering of SNP-array-based loss-of-heterozygosity data. Bioinformatics 20, 1233–1240.PubMedCrossRefGoogle Scholar
  10. 10.
    Carvalho, B., Bengtsson, H., Speed, T.P, and Irizarry R.A. (2007) Exploration, normalization, and genotype calls of high-density oligonucleotide SNP array data. Biostatistics 8, 485–499.PubMedCrossRefGoogle Scholar
  11. 11.
    Costantini, M., Clay, O., Auletta, F., and Bernardi, G. (2006) An isochore map of human chromosomes. Genome Res. 16, 536–541.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Marianne Tuefferd
    • 1
  • An de Bondt
    • 1
  • Ilse Van den Wyngaert
    • 1
  • Willem Talloen
    • 1
  • Hinrich Göhlmann
    • 1
  1. 1.Johnson & Johnson Pharmaceutical Research & DevelopmentBeerseBelgium

Personalised recommendations