Polyamines pp 295-308 | Cite as

Identification and Assays of Polyamine Transport Systems in Escherichia coli and Saccharomyces cerevisiae

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 720)

Abstract

Polyamine content in cells is regulated by biosynthesis, degradation, and transport. With regard to transport, uptake and excretion proteins exist in Escherichia coli and Saccharomyces cerevisiae. In E. coli, the uptake systems comprise a spermidine-preferential uptake system consisting of the PotA, B, C, and D proteins, and a putrescine-specific uptake system consisting of the PotF, G, H, and I proteins. Two other proteins, PotE and CadB, each containing 12 transmembrane segments, function as antiporters (putrescine-ornithine and cadaverine-lysine) and are important for cell growth at acidic pH. MdtJI was identified as a spermidine excretion system. When putrescine was used as energy source, PuuP functioned as a putrescine transporter. In S. cerevisiae, DUR3 and SAM3, containing 16 or 12 transmembrane segments, are the major polyamine uptake proteins, whereas TPO1 and TPO5, containing 12 transmembrane segments, are the major polyamine excretion proteins, and UGA4 is a putrescine transporter on the vacuolar membrane. The activities of DUR3 and TPO1 are regulated by phosphorylation of serine/threonine residues. The identification and assay procedures of these transporters are described in this chapter.

Key words

Polyamines Putrescine Spermidine Spermine Uptake Excretion Antiporter 

Notes

Acknowledgements

We are grateful to Drs. A. J. Michael and K. Williams for critical reading of the manuscript prior to submission. This study was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

References

  1. 1.
    Cohen SS (1998) A guide to polyamines. Oxford University Press, New York, pp 1–543Google Scholar
  2. 2.
    Igarashi K, Kashiwagi K (2000) Polyamines: mysterious modulators of cellular functions. Biochem Biophys Res Commun 271:559–564PubMedCrossRefGoogle Scholar
  3. 3.
    Igarashi K, Kashiwagi K (1999) Polyamine transport in bacteria and yeast. Biochem J 344:633–642PubMedCrossRefGoogle Scholar
  4. 4.
    Uemura T, Tachihara K, Tomitori H, Kashiwagi K, Igarashi K (2005) Characteristics of the polyamine transporter TPO1 and regulation of its activity and cellular localization by phosphorylation. J Biol Chem 280:9646–9652PubMedCrossRefGoogle Scholar
  5. 5.
    Tachihara K, Uemura T, Kashiwagi K, Igarashi K (2005) Excretion of putrescine and spermidine by the protein encoded by YKL174c (TPO5) in Saccharomyces cerevisiae. J Biol Chem 280:12637–12642PubMedCrossRefGoogle Scholar
  6. 6.
    Uemura T, Kashiwagi K, Igarashi K (2007) Polyamine uptake by DUR3 and SAM3 in Saccharomyces cerevisiae. J Biol Chem 282:7733–7741PubMedCrossRefGoogle Scholar
  7. 7.
    Higashi K, Ishigure H, Demizu R, Uemura T, Nishino K, Yamaguchi A, Kashiwagi K, Igarashi K (2008) Identification of a spermidine excretion protein complex (MdtJI) in Escherichia coli. J Bacteriol 190:872–878PubMedCrossRefGoogle Scholar
  8. 8.
    Cunningham-Rundles S, Maas WK (1975) Isolation, characterization, and mapping of Escherichia coli mutants blocked in the synthesis of ornithine decarboxylase. J Bacteriol 124:791–799PubMedGoogle Scholar
  9. 9.
    Linderoth N, Morris DR (1983) Structural specificity of the triamines sym-homospermidine and aminopropylcadaverine in stimulating growth of spermidine auxotrophs of Escherichia coli. Biochem Biophys Res Commun 117:616–622PubMedCrossRefGoogle Scholar
  10. 10.
    Kashiwagi K, Hosokawa N, Furuchi T, Kobayashi H, Sasakawa C, Yoshikawa M, Igarashi K (1990) Isolation of polyamine transport-deficient mutants of Escherichia coli and cloning of the genes for polyamine transport proteins. J Biol Chem 265:20893–20897PubMedGoogle Scholar
  11. 11.
    Fukuchi J, Kashiwagi K, Yamagishi M, Ishihama A, Igarashi K (1995) Decrease in cell viability due to the accumulation of spermidine in spermidine acetyltransferase-deficient mutant of Escherichia coli. J Biol Chem 270:18831–18835PubMedCrossRefGoogle Scholar
  12. 12.
    Kakinuma Y, Maruyama T, Nozaki T, Wada Y, Ohsumi Y, Igarashi K (1995) Cloning of the gene encoding a putative serine/threonine protein kinase which enhances spermine uptake in Saccharomyces cerevisiae. Biochem Biophys Res Commun 216:985–992PubMedCrossRefGoogle Scholar
  13. 13.
    Uemura T, Tomonari Y, Kashiwagi K, Igarashi K (2004) Uptake of GABA and putrescine by UGA4 on the vacuolar membrane in Saccharomyces cerevisiae. Biochem Biophys Res Commun 315:1082–1087PubMedCrossRefGoogle Scholar
  14. 14.
    Kaiser C, Michaelis S, Mitchell A (1994) Methods in yeast genetics: a cold harbor laboratory course manual. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  15. 15.
    Maniatis T, Fritsch EF, Sambrook J (1982) Transformation of the calcium chrolide procedure. In: Maniatis T, Fritsch EF, Sanbrook J (eds) Molecular cloning: a laboratory mannual. Cold Spring Harbor Laboratory, Colg Spring Harbor, pp 250–251Google Scholar
  16. 16.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  17. 17.
    Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168PubMedGoogle Scholar
  18. 18.
    Joho M, Ishikawa Y, Kunikane M, Inouhe M, Tohoyama H, Murayama T (1992) The subcellular distribution of nickel in Ni-sensitive and Ni-resistant strains of Saccharomyces cerevisiae. Microbios 71:149–159PubMedGoogle Scholar
  19. 19.
    Igarashi K, Kashiwagi K, Hamasaki H, Miura A, Kakegawa T, Hirose S, Matsuzaki S (1986) Formation of a compensatory polyamine by Escherichia coli polyamine-requiring mutants during growth in the absence of polyamines. J Bacteriol 166:128–134PubMedGoogle Scholar
  20. 20.
    Kashiwagi K, Innami A, Zenda R, Tomitori H, Igarashi K (2002) The ATPase activity and the functional domain of PotA, a component of the sermidine-preferential uptake system in Escheri­chia coli. J Biol Chem 277:24212–24219PubMedCrossRefGoogle Scholar
  21. 21.
    Antognoni F, Del Duca S, Kuraishi A, Kawabe E, Fukuchi-Shimogori T, Kashiwagi K, Igarashi K (1999) Transcriptional inhibition of the operon for the spermidine uptake system by the substrate-binding protein PotD. J Biol Chem 274:1942–1948PubMedCrossRefGoogle Scholar
  22. 22.
    Kurihara S, Oda S, Kato K, Kim HG, Koyanagi T, Kumagai H, Suzuki H (2005) A novel putrescine utilization pathway involves γ-glutamylated intermediates of Escherichia coli K-12. J Biol Chem 280:4602–4608PubMedCrossRefGoogle Scholar
  23. 23.
    Kashiwagi K, Kuraishi A, Tomitori H, Igarashi A, Nishimura K, Shirahata A, Igarashi K (2000) Identification of the putrescine recognition site on polyamine transport protein PotE. J Biol Chem 275:36007–36012PubMedCrossRefGoogle Scholar
  24. 24.
    Soksawatmaekhin W, Uemura T, Fukiwake N, Kashiwagi K, Igarashi K (2006) Identification of the cadaverine recognition site on the cadaverine-lysine antiporter CadB. J Biol Chem 281:29213–29220PubMedCrossRefGoogle Scholar
  25. 25.
    Raj VS, Tomitori H, Yoshida M, Apirakaramwong A, Kashiwagi K, Takio K, Ishihama A, Igarashi K (2001) Properties of a revertant of Escherichia coli viable in the presence of spermidine accumulation: increase in L-glycerol 3-phosphate. J Bacteriol 183:4493–4498PubMedCrossRefGoogle Scholar
  26. 26.
    Nozaki T, Nishimura K, Michael AJ, Maruyama T, Kakinuma Y, Igarashi K (1996) A second gene encoding a putative serine/threonine protein kinase which enhances spermine uptake in Saccharomyces cerevisiae. Biochem Biophys Res Commun 228:452–458PubMedCrossRefGoogle Scholar
  27. 27.
    Kashiwagi K, Miyamoto S, Suzuki F, Kobayashi H, Igarashi K (1992) Excretion of putrescine by the putrescine-ornithine antiporter encoded by the potE gene of Escherichia coli. Proc Natl Acad Sci USA 89:4529–4533PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Faculty of PharmacyChiba Institute of ScienceChibaJapan
  2. 2.Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
  3. 3.Amine Pharma Research InstituteInnovation Plaza at Chiba UniversityChibaJapan

Personalised recommendations