Restoring Visual Function After Photoreceptor Degeneration: Ectopic Expression of Photosensitive Proteins in Retinal Neurons

  • Bin Lin
  • Richard H. MaslandEmail author
Part of the Neuromethods book series (NM, volume 55)


A leading cause of blindness worldwide is degeneration of the retinal photoreceptor cells. The two large classes of such disorders are retinitis pigmentosa, which affects ∼100,000 individuals in the USA, and macular degeneration, which affects ∼3,000,000. The causes of both disorders are diverse, but the initial lesion in both cases is to the rod and cone photoreceptor cells, leaving a retina in which many neurons appear functionally intact, but the retina – either the entire tissue or specific regions of it – can no longer detect light. A strategy for restoring at least a minimal level of vision is to engineer the expression of a photosensitive molecule in the surviving, nonphotoreceptor, neurons. This has been achieved at the level of proof of principle in the rd strain of mice, which undergoes photoreceptor degeneration similar to retinitis pigmentosa. In separate experiments, Channelrhodopsin-2 or melanopsin were introduced into retinal neurons and restoration of electrophysiological responsiveness and simple visually guided behaviors was demonstrated. There is reason for cautious optimism that vision aided in this way may eventually be of use for humans suffering from photoreceptor degenerations.

Key words

Photoreceptor degeneration Gene therapy AAV Ganglion cells Bipolar cells Melanopsin Channelrhodopsin 


  1. 1.
    Ames A III, Li YY (1992) Energy requirements of glutamatergic pathways in rabbit retina. J Neurosci 12:4234PubMedGoogle Scholar
  2. 2.
    Marc RE, Jones BW, Strettoi E (2003) Neural remodeling in retinal degeneration. Prog Retin Eye Res 22(5):607–655PubMedCrossRefGoogle Scholar
  3. 3.
    Medeiros NE, Curcio CA (2001) Preservation of ganglion cell layer neurons in age-related macular degeneration. Invest Ophthalmol Vis Sci 424:795–803Google Scholar
  4. 4.
    Bennett J (2000) Gene therapy for ­retinitis pigmentosa. Curr Opin Mol Ther 2(4):420PubMedGoogle Scholar
  5. 5.
    Campochiaro PA (2002) Gene therapy for retinal and choroidal diseases. Expert Opin Biol Ther 2(5):537–544PubMedCrossRefGoogle Scholar
  6. 6.
    Sakamoto T, Ikeda Y, Yonemitsu Y (2001) Gene targeting to the retina. Adv Drug Deliv Rev 52(1):93–102PubMedCrossRefGoogle Scholar
  7. 7.
    Lanyi JK (1986) Halorhodopsin: a light-driven chloride ion pump. Annu Rev Biophys Biophys Chem 15:11–28PubMedCrossRefGoogle Scholar
  8. 8.
    Dinculescu A, Glushakova L, Min SH, Hauswirth WW (2005) Adeno-associated virus-vectored gene therapy for retinal disease. Hum Gene Ther 16(6):649–663PubMedCrossRefGoogle Scholar
  9. 9.
    Maguire AM, Simonelli F, Pierce EA et al (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358(21):2240–2248PubMedCrossRefGoogle Scholar
  10. 10.
    Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–1073PubMedCrossRefGoogle Scholar
  11. 11.
    Isoldi MC, Rollag MD, Castrucci AM, Provencio I (2005) Rhabdomeric phototransduction initiated by the vertebrate photopigment melanopsin. Proc Natl Acad Sci USA 102(4):1217–1221PubMedCrossRefGoogle Scholar
  12. 12.
    Melyan Z, Tarttelin EE, Bellingham J, Lucas RJ, Hankins MW (2005) Addition of human melanopsin renders mammalian cells photoresponsive. Nature 433(7027):741–745PubMedCrossRefGoogle Scholar
  13. 13.
    Newman LA, Walker MT, Brown RL, Cronin TW, Robinson PR (2003) Melanopsin forms a functional short-wavelength photopigment. Biochemistry 42(44):12734–12738PubMedCrossRefGoogle Scholar
  14. 14.
    Panda S, Nayak SK, Campo B, Walker JR, Hogenesch JB, Jegla T (2005) Illumination of the melanopsin signaling pathway. Science 307(5709):600–604PubMedCrossRefGoogle Scholar
  15. 15.
    Qiu X, Kumbalasiri T, Carlson SM et al (2005) Induction of photosensitivity by heterologous expression of melanopsin. Nature 433(7027):745–749PubMedCrossRefGoogle Scholar
  16. 16.
    Jones BW, Watt CB, Frederick JM et al (2003) Retinal remodeling triggered by photoreceptor degenerations. J Comp Neurol 464:1–16PubMedCrossRefGoogle Scholar
  17. 17.
    Strettoi E, Pignatelli V (2000) Modifications of retinal neurons in a mouse model of retinitis pigmentosa. Proc Natl Acad Sci USA 97:11020–11025PubMedCrossRefGoogle Scholar
  18. 18.
    Strettoi E, Porciatti V, Falsini B, Pignatelli V, Rossi C (2002) Morphological and functional abnormalities in the inner retina of the rd/rd mouse. J Neurosci 22:5492–5504PubMedGoogle Scholar
  19. 19.
    Berson EL (1993) Retinitis pigmentosa (The Friedenwald Lecture). Invest Ophthalmol Vis Sci 34:1659–1676PubMedGoogle Scholar
  20. 20.
    Blanks JC, Adinolfi AM, Lolley RN (1974) Synaptogenesis in the photoreceptor terminal of the mouse retina. J Comp Neurol 156(81):81–93PubMedCrossRefGoogle Scholar
  21. 21.
    Carter-Dawson LD, LaVail MM, Sidman RL (1978) Differential effect of the rd mutation on rods and cones in the mouse retina. Invest Ophthalmol Vis Sci 17(6):489–498PubMedGoogle Scholar
  22. 22.
    Chang GQ, Hao Y, Wong F (1993) Apoptosis: final common pathway of photoreceptor death in rd, rds, and rhodopsin mutant mice. Neuron 11:595–605PubMedCrossRefGoogle Scholar
  23. 23.
    Farber DB, Flannery JG, Bowes-Rickman C (1994) The rd mouse story: seventy years of research on an animal model of inherited retinal degeneration. Prog Retin Eye Res 13:31–64CrossRefGoogle Scholar
  24. 24.
    García-Fernández JM, Jimenez AJ, Foster RG (1995) The persistence of cone photoreceptors within the dorsal retina of aged retinally degenerate mice (rd/rd): implications for circadian organization. Neurosci Lett 187(1):33–36PubMedCrossRefGoogle Scholar
  25. 25.
    Jiménez AJ, García-Fernández JM, González B, Foster RG (1996) The spatio-temporal pattern of photoreceptor degeneration in the aged rd/rd mouse retina. Cell Tissue Res 284(2):193–202PubMedCrossRefGoogle Scholar
  26. 26.
    LaVail MM, Matthes MT, Yasumura D, Steinberg RH (1997) Variability in rate of cone degeneration in the retinal degeneration (rd/rd) mouse. Exp Eye Res 65(1):45–50PubMedCrossRefGoogle Scholar
  27. 27.
    Milam AH, Li ZY, Fariss RN (1998) Histopathology of the human retina in retinitis pigmentosa. Prog Retin Eye Res 17:175–205PubMedCrossRefGoogle Scholar
  28. 28.
    Bi A, Cui J, Ma YP et al (2006) Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50:23–33PubMedCrossRefGoogle Scholar
  29. 29.
    Nagel G, Szellas T, Huhn W et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA 100(24):13940–13945PubMedCrossRefGoogle Scholar
  30. 30.
    Lagali PS, Balya D, Awatramani GB et al (2008) Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci 11(6):667–675PubMedCrossRefGoogle Scholar
  31. 31.
    Lin B, Koizumi A, Tanaka N, Panda S, Masland RH (2008) Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc Natl Acad Sci USA 105:16009–16014PubMedCrossRefGoogle Scholar
  32. 32.
    Hattar S, Kumar M, Park A et al (2006) Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol 497(3):326–349PubMedCrossRefGoogle Scholar
  33. 33.
    Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1070PubMedCrossRefGoogle Scholar
  34. 34.
    Dacey DM, Liao HW, Peterson BB et al (2005) Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433(7027):749–754PubMedCrossRefGoogle Scholar
  35. 35.
    Neves SR, Ram PT, Iyengar R (2002) G protein pathways. Science 296:1636–1639PubMedCrossRefGoogle Scholar
  36. 36.
    Su AI, Wiltshire T, Batalov S et al (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 101:6062–6067PubMedCrossRefGoogle Scholar
  37. 37.
    Sekaran S, Sekaran S, Foster RG, Lucas RJ, Hankins MW (2003) Calcium imaging reveals a network of intrinsically light-sensitive inner-retinal neurons. Curr Biol 13:1290–1298PubMedCrossRefGoogle Scholar
  38. 38.
    Jeon CJ, Strettoi E, Masland RH (1998) The major cell populations of the mouse retina. J Neurosci 18:8936–8946PubMedGoogle Scholar
  39. 39.
    Badea TC, Nathans J (2004) Quantitative analysis of neuronal morphologies in the mouse retina visualized by using a geneti­cally directed reporter. J Comp Neurol 480:331–351PubMedCrossRefGoogle Scholar
  40. 40.
    Coombs JL, Van Der List D, Chalupa LM (2007) Morphological properties of mouse retinal ganglion cells during postnatal development. J Comp Neurol 503:803–814PubMedCrossRefGoogle Scholar
  41. 41.
    Kong JH, Fish DR, Rockhill RL, Masland RH (2005) The diversity of ganglion cells in the mouse retina: unsupervised morphological classification and its limits. J Comp Neurol 489(3):293–310PubMedCrossRefGoogle Scholar
  42. 42.
    Wong AA, Brown RE (2006) Visual detection, pattern discrimination and visual acuity in 14 strains of mice. Genes Brain Behav 5(5):389–403PubMedCrossRefGoogle Scholar
  43. 43.
    Pang JJ, Lauramore A, Deng WT et al (2008) Comparative analysis of in vivo and in vitro AAV vector transduction in the neonatal mouse retina: effects of serotype and site of administration. Vision Res 48(3):377–385PubMedCrossRefGoogle Scholar
  44. 44.
    Schiller PH, Sandell JH, Maunsell JH (1986) Functions of the ON and OFF channels of the visual system. Nature 322:824–825PubMedCrossRefGoogle Scholar
  45. 45.
    Hardie RC, Postma M (2008) Phototrans­duction in microvillar photoreceptors of drosophila and other invertebrates. In: Masland RH, Albright T (eds) The senses, 1st edn. Academic, Oxford, pp 77–130Google Scholar
  46. 46.
    Harwerth RS, Carter-Dawson L, Shen F, Smith EL III, Crawford ML (1999) Ganglion cell losses underlying visual field defects from experimental glaucoma. Invest Ophthalmol Vis Sci 40(10):2242–2250PubMedGoogle Scholar
  47. 47.
    Kerrigan-Baumrind LA, Quigley HA, Pease ME, Kerrigan DF, Mitchell RS (2000) Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci 41(3):741–748PubMedGoogle Scholar
  48. 48.
    Quigley HA, Addicks EM, Green WR (1982) Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. Arch Ophthalmol 100(1):135–146PubMedCrossRefGoogle Scholar
  49. 49.
    Sommer A, Katz J, Quigley HA et al (1991) Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol 109(1):77–83PubMedCrossRefGoogle Scholar
  50. 50.
    Wong KY, Dunn FA, Berson DM (2005) Photoreceptor adaptation in intrinsically photosensitive retinal ganglion cells. Neuron 48:1001–1010PubMedCrossRefGoogle Scholar
  51. 51.
    Lin B, Masland RH, Strettoi E (2009) Remodeling of cone photoreceptor cells after rod degeneration in rd mice. Exp Eye Res 88(3):589–599PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2011

Authors and Affiliations

  1. 1.Harvard Medical SchoolMassachusetts General HospitalBostonUSA

Personalised recommendations