Bioinformatics for Qualitative and Quantitative Proteomics

  • Chris Bielow
  • Clemens Gröpl
  • Oliver Kohlbacher
  • Knut Reinert
Part of the Methods in Molecular Biology book series (MIMB, volume 719)


Mass spectrometry is today a key analytical technique to elucidate the amount and content of proteins expressed in a certain cellular context. The degree of automation in proteomics has yet to reach that of genomic techniques, but even current technologies make a manual inspection of the data infeasible. This article addresses the key algorithmic problems bioinformaticians face when handling modern proteomic samples and shows common solutions to them. We provide examples on how algorithms can be combined to build relatively complex analysis pipelines, point out certain pitfalls and aspects worth considering and give a list of current state-of-the-art tools.

Key words

Mass Spectrometry MALDI ESI HPLC MS MS/MS Tandem-MS Software Algorithm 



CB is supported by the European Commission´s 7th Framework Program (GA202222). OK gratefully acknowledges financial support from DFG (SFB 685/B1, SPP 1335) and BMBF (0313842A, 0315395F).


  1. 1.
    Perkins, D. N., Pappin, D. J. C., Creasy, D. M., Cottrell, J. S. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567.PubMedCrossRefGoogle Scholar
  2. 2.
    Craig, R., Beavis, R. C. (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20, 1466–1467.PubMedCrossRefGoogle Scholar
  3. 3.
    Kohlbacher, O., Reinert, K., Gröpl, C., et al. (2007) TOPP – the OpenMS proteomics pipeline. Bioinformatics 23, e191–e197.Google Scholar
  4. 4.
    Ruckstuhl, A. (2001) Baseline subtraction using robust local regression estimation. J Quant Spectrosc Radiat Transfer 68, 179–193.CrossRefGoogle Scholar
  5. 5.
    Williams, B., Cornett, S., Dawant, B., Crecelius, A., Bodenheimer, B., Caprioli, R. An algorithm for baseline correction of MALDI mass spectra. New York, New York, USA: ACM Press, 2005.Google Scholar
  6. 6.
    Savitzky, A., Golay, M. J. E. (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36, 1627–1639.CrossRefGoogle Scholar
  7. 7.
    Li, X.-J., Yi, E. C., Kemp, C. J., Zhang, H., Aebersold, R. (2005) A software suite for the generation and comparison of peptide arrays from sets of data collected by liquid ­chromatography-mass spectrometry. Mol Cell Proteomics 4, 1328–1340.PubMedCrossRefGoogle Scholar
  8. 8.
    Lange, E., Gröpl, C., Reinert, K., Kohlbacher, O., Hildebrandt, A. High accuracy peak-­picking of proteomics data using wavelet techniques. In: Proceedings of the 11th Pacific Symposium on Biocomputing (PSB06). 2006 243–254.Google Scholar
  9. 9.
    Schulz-Trieglaff, O., Machtejevas, E., Reinert, K., Schlüter, H., Thiemann, J., Unger, K. (2009) Statistical quality assessment and outlier detection for liquid chromatography-mass spectrometry experiments. BioData Min 2, 4.PubMedCrossRefGoogle Scholar
  10. 10.
    Cox, J., Mann, M. (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and ­proteome-wide protein quantification. Nat Biotechnol 26, 1367–1372.PubMedCrossRefGoogle Scholar
  11. 11.
    Zhang, Z., Marshall, A. (1998) A universal algorithm for fast and automated charge state deconvolution of electrospray mass-to-charge ratio spectra. J Am Soc Mass Spectrom 9, 225–233.PubMedCrossRefGoogle Scholar
  12. 12.
    Horn, D. (2000) Automated reduction and interpretation of high resolution electrospray mass spectra of large molecules. J Am Soc Mass Spectrom 11, 320–332.PubMedCrossRefGoogle Scholar
  13. 13.
    Schulz-Trieglaff, O., Hussong, R., Gröpl, C., Hildebrandt, A., Reinert, K. A Fast and Accurate Algorithm for the Quantification of Peptides from Mass Spectrometry data. In: Proceedings of the 11th Annual International Conference on Research in Computational Molecular Biology. 2007 473–487.Google Scholar
  14. 14.
    Bellew, M., Coram, M., Fitzgibbon, M., et al. (2006) A suite of algorithms for the comprehensive analysis of complex protein mixtures using high-resolution LC-MS. Bioinformatics 22, 1902–1909.PubMedCrossRefGoogle Scholar
  15. 15.
    Katajamaa, M., Miettinen, J., Oresic, M. (2006) MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. BMC Bioinformatics 6, 634–636.Google Scholar
  16. 16.
    Tautenhahn, R., Böttcher, C., Neumann, S. Annotation of LC/ESI-MS mass signals. In: BIRD, Hochreiter, S., Wagner, R., eds., vol. 4414 of Lecture Notes in Computer Science. Springer, 2007 371–380.Google Scholar
  17. 17.
    Lange, E., Gröpl, C., Schulz-Trieglaff, O., Leinenbach, A., Huber, C., Reinert, K. (2007) A geometric approach for the alignment of liquid chromatography-mass spectrometry data. Bioinformatics 23, i273–i281.PubMedCrossRefGoogle Scholar
  18. 18.
    Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., Siuzdak, G. (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78, 779–787.PubMedCrossRefGoogle Scholar
  19. 19.
    Prince, J. T., Marcotte, E. M. (2006) Chromatographic alignment of ESI-LC-MS proteomics datasets by ordered bijective ­interpolated warping. Anal Chem 78, 6140–6152.PubMedCrossRefGoogle Scholar
  20. 20.
    Lange, E., Tautenhahn, R., Neumann, S., Gröpl, C. (2008) Critical assessment of alignment procedures for LC-MS proteomics and metabolomic measurements. BMC Bioinformatics 9, 375.PubMedCrossRefGoogle Scholar
  21. 21.
    Prakash, A., Mallick, P., Whiteaker, J., et al. (2005) Signal maps for mass spectrometry-based comparative proteomics. Mol Cell Proteomics 5, 423–432.PubMedCrossRefGoogle Scholar
  22. 22.
    Listgarten, J., Neal, R. M., Roweis, S. T., Wong, P., Emili, A. (2007) Difference detection in LC-MS data for protein biomarker discovery. Bioinformatics 23, e198–e204.PubMedCrossRefGoogle Scholar
  23. 23.
    Vandenbogaert, M., Li-Thiao-Té, S., Kaltenbach, H.-M., Zhang, R., Aittokallio, T., Schwikowski, B. (2008) Alignment of LC-MS images, with applications to biomarker discovery and protein identification. Proteomics 8, 650–672.PubMedCrossRefGoogle Scholar
  24. 24.
    Gupta, N., Pevzner, P. A. (2009) False discovery rates of protein identifications: a strike against the two-peptide rule. J Proteome Res 8, 4173–4181.PubMedCrossRefGoogle Scholar
  25. 25.
    Nesvizhskii, A. I., Keller, A., Kolker, E., Aebersold, R. (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75, 4646–4658.PubMedCrossRefGoogle Scholar
  26. 26.
    Li, Y. F., Arnold, R. J., Li, Y., Radivojac, P., Sheng, Q., Tang, H. (2009) A bayesian approach to protein inference problem in shotgun proteomics. J Comput Biol 16, 1183–1193.PubMedCrossRefGoogle Scholar
  27. 27.
    Dost, B., Bandeira, N., Li, X., Shen, Z., Briggs, S., Bafna, V. Shared Peptides in Mass Spectrometry Based Protein Quantification. In: Proceedings of the 13th Annual International Conference on Research in Computational Molecular Biology, Batzoglou, S., ed., vol. 5541 of Lecture Notes in Computer Science. Springer, 2009 356–371.Google Scholar
  28. 28.
    Carrillo, B., Yanofsky, C., Laboissiere, S., Nadon, R., Kearney, R. E. (2009) Methods for combining peptide intensities to estimate relative protein abundance. Bioinformatics.Google Scholar
  29. 29.
    Brusniak, M.-Y., Bodenmiller, B., Campbell, D., et al. (2008) Corra: computational framework and tools for LC-MS discovery and targeted mass spectrometry-based proteomics. BMC Bioinformatics 9, 542.PubMedCrossRefGoogle Scholar
  30. 30.
    Jaffe, J. D., Mani, D. R., Leptos, K. C., Church, G. M., Gillette, M. A., Carr, S. A. (2006) PEPPeR, a platform for experimental proteomic pattern recognition. Mol Cell Proteomics 5, 1927–1941.PubMedCrossRefGoogle Scholar
  31. 31.
    Palagi, P. M., Walther, D., Quadroni, M., et al. (2005) MSight: an image analysis software for liquid chromatography-mass spectrometry. Proteomics 5, 2381–2384.PubMedCrossRefGoogle Scholar
  32. 32.
    Schulze, W. X., Mann, M. (2004) A novel proteomic screen for peptide-protein interactions. J Biol Chem 279, 10756–10764.PubMedCrossRefGoogle Scholar
  33. 33.
    Kessner, D., Chambers, M., Burke, R., Agus, D., Mallick, P. (2008) ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24, 2534–2536.Google Scholar
  34. 34.
    Mueller, L. N., Rinner, O., Schmidt, A., et al. (2007) SuperHirn – a novel tool for high resolution LC-MS-based peptide/protein profiling. Proteomics 7, 3470–3480.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Chris Bielow
    • 1
  • Clemens Gröpl
    • 2
  • Oliver Kohlbacher
    • 3
  • Knut Reinert
    • 1
  1. 1.AG Algorithmische Bioinformatik, Institut für InformatikFreie Universität BerlinBerlinGermany
  2. 2.Ernst-Moritz-Arndt-Universität GreifswaldGreifswaldGermany
  3. 3.Eberhard-Karls-Universität TübingenTübingenGermany

Personalised recommendations