A High-Throughput Assay for DNA Deaminases

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 718)

Abstract

Most members of the AID/APOBEC family of polynucleotide deaminases can catalyse the deamination of cytosine to uracil in DNA. They thereby function as active DNA mutators. Here, we describe how bacterial papillation assays can be adapted to monitor the mutator activity of AID/APOBEC proteins and show how such papillation assays can be used as a high-throughput screen to identify AID variants with increased specific activity. It should also be possible to use papillation assays for the identification of novel DNA deaminases.

Key words

Papillation assay Activation-induced deaminase APOBEC DNA deaminase Cytosine deamination 

References

  1. 1.
    Neuberger, M. S., Harris, R. S., Di Noia, J., and Petersen-Mahrt, S. K. (2003) Immunity through DNA deamination, Trends Biochem Sci 28, 305–312.PubMedCrossRefGoogle Scholar
  2. 2.
    Malim, M. H. (2009) APOBEC proteins and intrinsic resistance to HIV-1 infection, Philos Trans R Soc Lond B Biol Sci 364, 675–687.PubMedCrossRefGoogle Scholar
  3. 3.
    Navaratnam, N., Morrison, J. R., Bhattacharya, S., Patel, D., Funahashi, T., Giannoni, F., Teng, B. B., Davidson, N. O., and Scott, J. (1993) The p27 catalytic subunit of the apolipoprotein B mRNA editing enzyme is a cytidine deaminase, J Biol Chem 268, 20709–20712.PubMedGoogle Scholar
  4. 4.
    Teng, B., Burant, C. F., and Davidson, N. O. (1993) Molecular cloning of an apolipoprotein B messenger RNA editing protein, Science 260, 1816–1819.PubMedCrossRefGoogle Scholar
  5. 5.
    Conticello, S. G., Thomas, C. J., Petersen-Mahrt, S. K., and Neuberger, M. S. (2005) Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases, Mol Biol Evol 22, 367–377.PubMedCrossRefGoogle Scholar
  6. 6.
    Harris, R. S., Bishop, K. N., Sheehy, A. M., Craig, H. M., Petersen-Mahrt, S. K., Watt, I. N., Neuberger, M. S., and Malim, M. H. (2003) DNA deamination mediates innate immunity to retroviral infection, Cell 113, 03–809.PubMedCrossRefGoogle Scholar
  7. 7.
    Coker, H. A., Morgan, H. D., and Petersen-Mahrt, S. K. (2006) Genetic and in vitro assays of DNA deamination, Methods Enzymol 408, 156–170.PubMedCrossRefGoogle Scholar
  8. 8.
    Pham, P., Bransteitter, R., Petruska, J., and Goodman, M. F. (2003) Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hyper­mutation, Nature 424, 103–107.PubMedCrossRefGoogle Scholar
  9. 9.
    Bransteitter, R., Pham, P., Calabrese, P., and Goodman, M. F. (2004) Biochemical analysis of hypermutational targeting by wild type and mutant activation-induced cytidine deaminase, J Biol Chem 279, 51612–51621.PubMedCrossRefGoogle Scholar
  10. 10.
    Shen, H. M. and Storb, U. (2004) Activation-induced cytidine deaminase (AID) can target both DNA strands when the DNA is supercoiled, Proc Natl Acad Sci USA 101, 12997–13002.PubMedCrossRefGoogle Scholar
  11. 11.
    Sohail, A., Klapacz, J., Samaranayake, M., Ullah, A., and Bhagwat, A. S. (2003) Human activation-induced cytidine deaminase causes transcription-dependent, strand-biased C to U deaminations, Nucleic Acids Res 31, 2990–2994.PubMedCrossRefGoogle Scholar
  12. 12.
    Harris, R. S., Petersen-Mahrt, S. K., and Neuberger, M. S. (2002) RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators, Mol Cell 10, 1247–1253.PubMedCrossRefGoogle Scholar
  13. 13.
    Petersen-Mahrt, S. K., Harris, R. S., and Neuberger, M. S. (2002) AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification, Nature 418, 99–103.PubMedCrossRefGoogle Scholar
  14. 14.
    Beale, R. C., Petersen-Mahrt, S. K., Watt, I. N., Harris, R. S., Rada, C., and Neuberger, M. S. (2004) Comparison of the differential context-dependence of DNA deamination by APOBEC enzymes: correlation with mutation spectra in vivo, J Mol Biol 337, 585–596.PubMedCrossRefGoogle Scholar
  15. 15.
    Ramiro, A. R., Stavropoulos, P., Jankovic, M., and Nussenzweig, M. C. (2003) Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand, Nat Immunol 4, 452–456.PubMedCrossRefGoogle Scholar
  16. 16.
    Konrad, E. B. (1978) Isolation of an Escherichia coli K-12 dnaE mutation as a mutator, J Bacteriol 133, 1197–1202.PubMedGoogle Scholar
  17. 17.
    Nghiem, Y., Cabrera, M., Cupples, C. G., and Miller, J. H. (1988) The mutY gene: a mutator locus in Escherichia coli that generates G.C – T.A transversions, Proc Natl Acad Sci USA 85, 2709–2713.PubMedCrossRefGoogle Scholar
  18. 18.
    Ruiz, S. M., Letourneau, S., and Cupples, C. G. (1993) Isolation and characterization of an Escherichia coli strain with a high frequency of C-to-T mutations at 5-methylcytosines, J Bacteriol 175, 4985–4989.PubMedGoogle Scholar
  19. 19.
    Yang, H., Wolff, E., Kim, M., Diep, A., and Miller, J. H. (2004) Identification of mutator genes and mutational pathways in Escherichia coli using a multicopy cloning approach, Mol Microbiol 53, 283–295.PubMedCrossRefGoogle Scholar
  20. 20.
    Gabrovsky, V., Yamamoto, M. L., and Miller, J. H. (2005) Mutator effects in Escherichia coli caused by the expression of specific foreign genes, J Bacteriol 187, 5044–5048.PubMedCrossRefGoogle Scholar
  21. 21.
    Yang, H., To, K. H., Aguila, S. J., and Miller, J. H. (2006) Metagenomic DNA fragments that affect Escherichia coli mutational pathways, Mol Microbiol 61, 960–977.PubMedCrossRefGoogle Scholar
  22. 22.
    Cupples, C. G. and Miller, J. H. (1989) A set of lacZ mutations in Escherichia coli that allow rapid detection of each of the six base substitutions, Proc Natl Acad Sci USA 86, 5345–5349.PubMedCrossRefGoogle Scholar
  23. 23.
    Sambrook, J. and Russell, D. (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Woodbury, NY. 66, 75.Google Scholar
  24. 24.
    Wang, M., Yang, Z., Rada, C., and Neuberger, M. S. (2009) AID upmutants isolated using a high-throughput screen highlight the immunity/cancer balance limiting DNA deaminase activity, Nat Struct Mol Biol 16, 769–776.PubMedCrossRefGoogle Scholar
  25. 25.
    Guzman, L. M., Belin, D., Carson, M. J., and Beckwith, J. (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter, J Bacteriol 177, 4121–4130.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Meng Wang
    • 1
  • Cristina Rada
    • 1
  • Michael S. Neuberger
    • 1
  1. 1.Medical Research Council Laboratory of Molecular BiologyCambridgeUK

Personalised recommendations