Computer-Aided Drug Discovery and Development

  • Shuxing ZhangEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 716)


Computer-aided approaches have been widely used in pharmaceutical research to improve the efficiency of the drug discovery and development pipeline. To identify and design small molecules as clinically effective therapeutics, various computational methods have been evaluated as promising strategies, depending on the purpose and systems of interest. Both ligand and structure-based drug design approaches are powerful technologies, which can be applied to virtual screening for lead identification and optimization. Here, we review the progress in this field and summarize the application of some new technologies we developed. These state-of-the-art tools have been used for the discovery and development of active agents for various diseases, in particular for cancer therapies. The described protocols are appropriate for all drug discovery stages, but expertise is still needed to perform the studies based on the targets of interest.

Key words

Computer-aided drug discovery High-throughput screening Ligand-based drug design Molecular docking Quantitative structure–activity relationship Structure-based drug design, Virtual screening 



We are grateful to John Morrow for proofreading this chapter, and this work was supported in part by MD Anderson faculty startup fund.


  1. 1.
    Workman, P. (2003). How much gets there and what does it do?: The need for better pharmacokinetic and pharmacodynamic endpoints in contemporary drug discovery and development. Curr Pharm Des. 9: 891–902.PubMedCrossRefGoogle Scholar
  2. 2.
    Brown, D. & Superti-Furga, G. (2003). Rediscovering the sweet spot in drug discovery. Drug Discov Today. 8: 1067–1077.PubMedCrossRefGoogle Scholar
  3. 3.
    Gomeni, R., Bani, M., D’Angeli, C., Corsi, M. & Bye, A. (2001). Computer-assisted drug development (CADD): an emerging technology for designing first-time-in-man and proof-of-concept studies from preclinical experiments. Eur J Pharm Sci. 13: 261–270.PubMedCrossRefGoogle Scholar
  4. 4.
    Veselovsky, A. V. & Ivanov, A. S. (2003). Strategy of computer-aided drug design. Curr Drug Targets Infect Disord. 3: 33–40.PubMedCrossRefGoogle Scholar
  5. 5.
    Stahura, F. L. & Bajorath, J. (2004). Virtual screening methods that complement HTS. Comb Chem High Throughput Screen. 7: 259–269.PubMedGoogle Scholar
  6. 6.
    Guner, O., Clement, O. & Kurogi, Y. (2004). Pharmacophore modeling and three dimensional database searching for drug design using catalyst: Recent advances. Curr Med Chem. 11: 2991–3005.PubMedGoogle Scholar
  7. 7.
    Hansch, C., Leo, A., Mekapati, S. B. & Kurup, A. (2004). Qsar and Adme. Bioorg Med Chem. 12: 3391–3400.PubMedCrossRefGoogle Scholar
  8. 8.
    Parvu, L. (2003). QSAR – a piece of drug design. J Cell Mol Med. 7: 333–335.PubMedCrossRefGoogle Scholar
  9. 9.
    Langer, T. & Wolber, G. (2004). Virtual combinatorial chemistry and in silico screening: Efficient tools for lead structure discovery? Pure App Chem. 76: 991–996.CrossRefGoogle Scholar
  10. 10.
    Dror, O., Shulman-Peleg, A., Nussinov, R. & Wolfson, H. J. (2004). Predicting molecular interactions in silico: I. A guide to pharmacophore identification and its applications to drug design. Curr Med Chem. 11: 71–90.PubMedCrossRefGoogle Scholar
  11. 11.
    Perkins, R., Fang, H., Tong, W. D. & Welsh, W. J. (2003). Quantitative structure-activity relationship methods: Perspectives on drug discovery and toxicology. Environ Toxicol Chem. 22: 1666–1679.PubMedCrossRefGoogle Scholar
  12. 12.
    Tropsha, A. & Zhang, W. F. (2001). Identification of the descriptor pharma­cophores using variable selection QSAR: Appli­cations to database mining. Curr Pharm Design. 7: 599–612.CrossRefGoogle Scholar
  13. 13.
    Leo, A. J. & Hansch, C. (1999). Role of hydrophobic effects in mechanistic QSAR. Perspect Drug Discov Design. 17: 1–25.CrossRefGoogle Scholar
  14. 14.
    Garg, R., Kurup, A., Mekapati, S. B. & Hansch, C. (2003). Searching for allosteric effects via QSAR. Part II. Bioorg Med Chem. 11: 621–628.PubMedCrossRefGoogle Scholar
  15. 15.
    Kier, L. B. & Hall, L. H. (1993). The generation of molecular-structures from a graph-based Qsar equation. Quant Struct Act Relat. 12: 383–388.CrossRefGoogle Scholar
  16. 16.
    Hall, L. H. & Kier, L. B. (2001). Issues in representation of molecular structure – The development of molecular connectivity. J Mol Graph Model. 20: 4–18.PubMedCrossRefGoogle Scholar
  17. 17.
    Anker, L. S., Jurs, P. C. & Edwards, P. A. (1990). Quantitative structure retention relationship studies of odor-active aliphatic-compounds with oxygen-containing functional-groups. Anal Chem. 62: 2676–2684.PubMedCrossRefGoogle Scholar
  18. 18.
    Crippen, G. M. (1982). Distance geometry analysis of the benzodiazepine binding-site. Mol Pharmacol. 22: 11–19.PubMedGoogle Scholar
  19. 19.
    Hopfinger, A. J. (1980). A Qsar Investigation of dihydrofolate-reductase inhibition by baker triazines based upon molecular shape-analysis. J Am Chem Soc. 102: 7196–7206.CrossRefGoogle Scholar
  20. 20.
    Boulu, L. G. & Crippen, G. M. (1989). Voronoi binding-site models – calculation of binding modes and influence of drug-binding data accuracy. J Comb Chem. 10: 673–682.CrossRefGoogle Scholar
  21. 21.
    Cramer, R. D., III, Patterson, D. E. & Bunce, J. D. (1988). Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc. 110: 5959–5967.PubMedCrossRefGoogle Scholar
  22. 22.
    So, S. S. & Richards, W. G. (1992). Application of neural networks – quantitative structure-activity-relationships of the derivatives of 2,4-diamino-5-(substituted-benzyl)pyrimidines as Dhfr inhibitors. J Med Chem. 35: 3201–3207.PubMedCrossRefGoogle Scholar
  23. 23.
    Tetko, I. V., Tanchuk, V. Y., Chentsova, N. P., Antonenko, S. V., Poda, G. I., Kukhar, V. P. & Luik, A. I. (1994). Hiv-1 reverse-transcriptase inhibitor design using artificial neural networks. J Med Chem. 37: 2520–2526.PubMedCrossRefGoogle Scholar
  24. 24.
    Ajay, A. & Murcko, M. A. (1995). Computational methods to predict binding free energy in ligand-receptor complexes.J Med Chem. 38: 4953–4967.PubMedCrossRefGoogle Scholar
  25. 25.
    Andrea, T. A. & Kalayeh, H. (1991). Applications of neural networks in quantitative structure-activity-relationships of dihydrofolate-reductase inhibitors. J Med Chem. 34: 2824–2836.PubMedCrossRefGoogle Scholar
  26. 26.
    Bolis, G., Dipace, L. & Fabrocini, F. (1991). A machine learning approach to computer-aided molecular design. J Comput Aided Mol Des. 5: 617–628.PubMedCrossRefGoogle Scholar
  27. 27.
    King, R. D., Muggleton, S., Lewis, R. A. & Sternberg, M. J. E. (1992). Drug design by machine learning – the use of inductive logic programming to model the structure-activity-relationships of trimethoprim analogs binding to dihydrofolate-reductase. Proc Natl Acad Sci U S A. 89: 11322–11326.PubMedCrossRefGoogle Scholar
  28. 28.
    Jain, A. N., Dietterich, T. G., Lathrop, R. H., Chapman, D., Critchlow, R. E., Bauer, B. E., Webster, T. A. & Lozanoperez, T. (1994). Compass – a shape-based machine learning tool for drug design. J Comput Aided Mol Des. 8: 635–652.PubMedCrossRefGoogle Scholar
  29. 29.
    Zheng, W. F. & Tropsha, A. (2000). Novel variable selection quantitative structure-property relationship approach based on the k-nearest-neighbor principle. J Chem Inf Comput Sci. 40: 185–194.PubMedCrossRefGoogle Scholar
  30. 30.
    Xue, C. X., Zhang, R. S., Liu, H. X., Yao, X. J., Liu, M. C., Hu, Z. D. & Fan, B. T. (2004). An accurate QSPR study of O-H bond dissociation energy in substituted phenols based on support vector machines. J Chem Inf Comput Sci. 44: 669–677.PubMedCrossRefGoogle Scholar
  31. 31.
    Yao, X. J., Panaye, A., Doucet, J. P., Zhang, R. S., Chen, H. F., Liu, M. C., Hu, Z. D. & Fan, B. T. (2004). Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression. J Chem Inf Comput Sci. 44: 1257–1266.PubMedCrossRefGoogle Scholar
  32. 32.
    Kovatcheva, A., Golbraikh, A., Oloff, S., Xiao, Y. D., Zheng, W. F., Wolschann, P., Buchbauer, G. & Tropsha, A. (2004). Combinatorial QSAR of ambergris fragrance compounds.J Chem Inf Comput Sci. 44: 582–595.PubMedCrossRefGoogle Scholar
  33. 33.
    Mjolsness, E. & DeCoste, D. (2001). Machine learning for science: State of the art and future prospects. Science 293: 2051–2055.PubMedCrossRefGoogle Scholar
  34. 34.
    Herbrich, R. & Williamson, R. C. (2003). Algorithmic luckiness. J Mac Learn Res. 3: 175–212.Google Scholar
  35. 35.
    Schneider, G. & Downs, G. (2003). Machine learning methods in QSAR modelling. QSAR Comb Sci. 22: 485–486.CrossRefGoogle Scholar
  36. 36.
    Sebastiani, P., Kohane, I. S. & Ramoni, M. F. (2003). Machine learning in the Genomics era – Editorial: Methods in functional genomics. Machine Learning 52: 5–9.CrossRefGoogle Scholar
  37. 37.
    Smith, M. G. & Bull, L. (2003). Feature construction and selection using Genetic Programming and a Genetic Algorithm. Genetic Programming, Proceedings 2610, 229–237.CrossRefGoogle Scholar
  38. 38.
    Armengol, E. & Plaza, E. (2003). Discovery of toxicological patterns with lazy learning. Knowledge-Based Intellignet Information and Engineering Systems, Pt 2, Proceedings 2774, 919–926.CrossRefGoogle Scholar
  39. 39.
    Oloff, S., Zhang, S., Sukumar, N., Breneman, C. & Tropsha, A. (2006). Chemometric analysis of ligand receptor complementarity: identifying complementary ligands based on receptor information (CoLiBRI). J Chem Inf Model. 46: 844–851.PubMedCrossRefGoogle Scholar
  40. 40.
    Zhang, S., Golbraikh, A. & Tropsha, A. (2006). Development of quantitative structure-binding affinity relationship models based on novel geometrical chemical descriptors of the protein-ligand interfaces. J Med Chem. 49: 2713–2724.PubMedCrossRefGoogle Scholar
  41. 41.
    Zhang, S., Golbraikh, A., Oloff, S., Kohn, H. & Tropsha, A. (2006). A novel automated lazy learning QSAR (ALL-QSAR) approach: method development, applications, and virtual screening of chemical databases using validated ALL-QSAR models. J Chem Inf Model 46: 1984–1995.PubMedCrossRefGoogle Scholar
  42. 42.
    Zhang, S., Wei, L., Bastow, K., Zheng, W., Brossi, A., Lee, K. H. & Tropsha, A. (2007). Antitumor agents 252. Application of validated QSAR models to database mining: discovery of novel tylophorine derivatives as potential anticancer agents. J Comput Aided Mol Des. 21: 97–112.PubMedCrossRefGoogle Scholar
  43. 43.
    Duch, W., Swaminathan, K. & Meller, J. (2007). Artificial intelligence approaches for rational drug design and discovery. Curr Pharm Des. 13: 1497–1508.PubMedCrossRefGoogle Scholar
  44. 44.
    Clark, D. E. & Grootenhuis, P. D. (2002). Progress in computational methods for the prediction of ADMET properties. Curr Opin Drug Discov Dev. 5: 382–390.PubMedGoogle Scholar
  45. 45.
    Davis, A. M. & Riley, R. J. (2004). Predictive ADMET studies, the challenges and the opportunities. Curr Opin Chem Biol. 8: 378–386.PubMedCrossRefGoogle Scholar
  46. 46.
    Li, H., Yap, C. W., Ung, C. Y., Xue, Y., Li, Z. R., Han, L. Y., Lin, H. H. & Chen, Y. Z. (2007). Machine learning approaches for predicting compounds that interact with therapeutic and ADMET related proteins. J Pharm Sci. 96: 2838–2860.PubMedCrossRefGoogle Scholar
  47. 47.
    Yap, C. W., Cai, C. Z., Xue, Y. & Chen, Y. Z. (2004). Prediction of torsade-causing potential of drugs by support vector machine approach. Toxicol Sci. 79: 170–177.PubMedCrossRefGoogle Scholar
  48. 48.
    Kubinyi, H. (2003). Drug research: myths, hype and reality. Nat Rev Drug Discov. 2: 665–668.PubMedCrossRefGoogle Scholar
  49. 49.
    Reddy, M. R. & Erion, M. D. (1998). Structure-based drug design approaches for predicting binding affinities of HIV1 protease inhibitors. J Enzyme Inhib. 14: 1–14.PubMedCrossRefGoogle Scholar
  50. 50.
    Taylor, R. D., Jewsbury, P. J. & Essex, J. W. (2002). A review of protein-small molecule docking methods. J Comput Aided Mol Des. 16: 151–166.PubMedCrossRefGoogle Scholar
  51. 51.
    Kuntz, I. D., Meng, E. C. & Shoichet, B. K. (1994). Structure-based molecular design. Acc Chem Res. 27: 117–123.CrossRefGoogle Scholar
  52. 52.
    Hardy, L. W. & Malikayil, A. (2003). The impact of structure-guided drug design on clinical agents. Curr Drug Discov. 3: 15–20.Google Scholar
  53. 53.
    Maryanoff, B. E. (2004). Inhibitors of serine proteases as potential therapeutic agents: The road from thrombin to tryptase to cathepsin G. J Med Chem. 47: 769–787.PubMedCrossRefGoogle Scholar
  54. 54.
    Chen, L. S., Nowak, B. J., Ayres, M. L., Krett, N. L., Rosen, S. T., Zhang, S. & Gandhi, V. (2009). Inhibition of ATP synthase by chlorinated adenosine analogue. Biochem Pharmacol. 78: 583–591.PubMedCrossRefGoogle Scholar
  55. 55.
    Du-Cuny, L., Song, Z., Moses, S., Powis, G., Mash, E. A., Meuillet, E. J. & Zhang, S. (2009). Computational modeling of novel inhibitors targeting the Akt pleckstrin homology domain. Bioorg Med Chem. 17: 6983–6992.PubMedCrossRefGoogle Scholar
  56. 56.
    Mahadevan, D., Powis, G., Mash, E. A., et al. (2008). Discovery of a novel class of AKT pleckstrin homology domain inhibitors. Mol Cancer Ther. 7: 2621–2632.PubMedCrossRefGoogle Scholar
  57. 57.
    Moses, S. A., Ali, M. A., Zuohe, S., Du-Cuny, L., Zhou, L. L., Lemos, R., Ihle, N., Skillman, A. G., Zhang, S., Mash, E. A., Powis, G., Meuillet, E. J. (2009). In vitro and in vivo activity of novel small-molecule inhibitors targeting the pleckstrin homology domain of protein kinase B/AKT. Cancer Res. 69: 5073–5081.PubMedCrossRefGoogle Scholar
  58. 58.
    Zhang, S., Ying, W. S., Siahaan, T. J. & Jois, S. D. S. (2003). Solution structure of a peptide derived from the beta subunit of LFA-1. Peptides. 24: 827–835.CrossRefGoogle Scholar
  59. 59.
    Zhang, S., Kumar, K., Jiang, X., Wallqvist, A. & Reifman, J. (2008). DOVIS: an implementation for high-throughput virtual screening using AutoDock. BMC Bioinformatics 9: 126.PubMedCrossRefGoogle Scholar
  60. 60.
    Zhang, S., Kaplan, A. H. & Tropsha, A. (2008). HIV-1 protease function and structure studies with the simplicial neighborhood analysis of protein packing method. Proteins. 73: 742–753.PubMedCrossRefGoogle Scholar
  61. 61.
    Zhang, S. & Du-Cuny, L. (2009). Development and evaluation of a new statistical model for structure-based high-throughput virtual screening. Int J Bioinform Res Appl. 5: 269–279.PubMedCrossRefGoogle Scholar
  62. 62.
    Kitchen, D. B., Decornez, H., Furr, J. R. & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat Rev Drug Discov. 3: 935–949.PubMedCrossRefGoogle Scholar
  63. 63.
    Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K. & Olson, A. J. (1999). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem. 19: 1639–1662.CrossRefGoogle Scholar
  64. 64.
    Halperin, I., Ma, B., Wolfson, H. & Nussinov, R. (2002). Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins 47: 409–443.PubMedCrossRefGoogle Scholar
  65. 65.
    Makino, S. & Kuntz, I. D. (1997). Automated flexible ligand docking method and its application for database search. J Comb Chem. 18: 1812–1825.CrossRefGoogle Scholar
  66. 66.
    Shoichet, B. K. & Kuntz, I. D. (1991). Protein docking and complementarity. J Mol Biol. 221: 327–346.PubMedCrossRefGoogle Scholar
  67. 67.
    Kramer, B., Metz, G., Rarey, M. & Lengauer, T. (1999). Ligand docking and screening with FlexX. Med Chem Res. 9: 463–478.Google Scholar
  68. 68.
    Rarey, M., Kramer, B., Lengauer, T. & Klebe, G. (1996). A fast flexible docking method using an incremental construction algorithm. J Mol Biol. 261: 470–489.PubMedCrossRefGoogle Scholar
  69. 69.
    Goodsell, D. S., Morris, G. M. & Olson, A. J. (1996). Automated docking of flexible ligands: applications of AutoDock. J Mol Recognit. 9: 1–5.PubMedCrossRefGoogle Scholar
  70. 70.
    Cornell, W. D., Cieplak, P., Bayly, C. I., et al. (1996). A second generation force field for the simulation of proteins, nucleic acids and organic molecules. J Am Chem Soc. 117: 5179–5197.CrossRefGoogle Scholar
  71. 71.
    MacKerell, A. D., Jr., Banavali, N. & Foloppe, N. (2000). Development and current status of the CHARMM force field for nucleic acids. Biopolymers. 56: 257–265.PubMedCrossRefGoogle Scholar
  72. 72.
    Halgren, T. A. (1996). Merck molecular force field: 1. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem. 17: 490–519.CrossRefGoogle Scholar
  73. 73.
    Shoichet, B. K., Leach, A. R. & Kuntz, I. D. (1999). Ligand solvation in molecular docking. Proteins. 34: 4–16.PubMedCrossRefGoogle Scholar
  74. 74.
    Bohm, H. J. (1992). Ludi – rule-based automatic design of new substituents for enzyme-inhibitor leads. J Comput Aided Mol Des. 6: 593–606.PubMedCrossRefGoogle Scholar
  75. 75.
    Bohm, H. J. (1992). The computer-program Ludi – a new method for the denovo design of enzyme-inhibitors. J Comput Aided Mol Des. 6: 61–78.PubMedCrossRefGoogle Scholar
  76. 76.
    Bohm, H. J. (1998). Prediction of binding constants of protein ligands: a fast method for the prioritization of hits obtained from de novo design or 3D database search programs.J Comput Aided Mol Des. 12: 309–323.PubMedCrossRefGoogle Scholar
  77. 77.
    Head, R. D., Smythe, M. L., Oprea, T. I., Waller, C. L., Green, S. M. & Marshall, G. R. (1996). VALIDATE: a new method for the receptor-based prediction of binding affinities of novel ligands. J Am Chem Soc. 118: 3959–3969.CrossRefGoogle Scholar
  78. 78.
    Gohlke, H., Hendlich, M. & Klebe, G. (2000). Knowledge-based scoring function to predict protein-ligand interactions. J Mol Biol. 295: 337–356.PubMedCrossRefGoogle Scholar
  79. 79.
    DeWitte, R. S. & Shakhnovich, E. I. (1996). SMoG: de novo design method based on simple, fast, and accurate free energy estimates. 1. Methodology and supporting evidence. J Am Chem Soc. 118: 11733–11744.CrossRefGoogle Scholar
  80. 80.
    Muegge, I. & Martin, Y. C. (1999). A general and fast scoring function for protein-ligand interactions: a simplified potential approach.J Med Chem. 42: 791–804.PubMedCrossRefGoogle Scholar
  81. 81.
    Mitchell, J. B. O., Laskowski, R. A., Alex, A. & Thornton, J. M. (1999). BLEEP-potential of mean force describing protein-ligand interactions: I. Generating potential. J Comput Chem. 20: 1165–1176.CrossRefGoogle Scholar
  82. 82.
    Johnston, W. E., Jacobson, V. L., Loken, S. C., Robertson, D. W. & Tierney, B. L. (1992). High-performance computing, high-speed networks, and configurable computing environments: progress toward fully distributed computing. Crit Rev Biomed Eng. 20: 315–354.PubMedGoogle Scholar
  83. 83.
    Golbraikh, A., Shen, M., Xiao, Z. Y., Xiao, Y. D., Lee, K. H. & Tropsha, A. (2003). Rational selection of training and test sets for the development of validated QSAR models. J Comput Aided Mol Des. 17: 241–253.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Experimental TherapeuticsM.D. Anderson Cancer CenterHoustonUSA

Personalised recommendations