Advertisement

Electron Tomography and Immunogold Labelling as Tools to Analyse De Novo Assembly of Plant Cell Walls

  • Marisa S. OteguiEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 715)

Abstract

High-resolution imaging of the membranous intermediates and cytoskeletal arrays involved in the assembly of a new cell wall during plant cytokinesis requires state-of-the-art electron microscopy techniques. The combination of cryofixation/freeze-substitution methods with electron tomography (ET) has revealed amazing structural details of this unique cellular process. This chapter deals with the main steps associated with these imaging techniques: selection of samples suitable for studying plant cytokinesis, sample preparation by high-pressure freezing/freeze substitution, and ET of plastic sections. In addition, immunogold approaches for the identification of proteins and polysaccharides during cell wall assembly are discussed.

Key words

Electron tomography Cell walls Cytokinesis Cryofixation Immunolabelling 

Notes

Acknowledgements

This work was supported by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, grant number 2008-35304-18672 to M.S.O.

References

  1. 1.
    Otegui, M. S., Mastronarde, D. N., Kang, B. H., Bednarek, S. Y., and Staehelin, L. A. (2001) Three-dimensional analysis of syncytial-type cell plates during endosperm cellularization visualised by high resolution electron tomography. Plant Cell 13, 2033–2051.PubMedGoogle Scholar
  2. 2.
    Otegui, M. S., and Staehelin, L. A. (2004) Electron tomographic analysis of post-meiotic cytokinesis during pollen development in Arabidopsis thaliana. Planta 218, 501–515.PubMedCrossRefGoogle Scholar
  3. 3.
    Segui-Simarro, J. M., Austin, J. R., II, White, E. A., and Staehelin, L. A. (2004) Electron tomographic analysis of somatic cell plate formation in meristematic cells of Arabidopsis preserved by high-pressure freezing. Plant Cell 16, 836–856.PubMedCrossRefGoogle Scholar
  4. 4.
    Austin, J. R., II, Segui-Simarro, J. M., and Staehelin, L. A. (2005) Quantitative analysis of changes in spatial distribution and plus-end geometry of microtubules involved in plant-cell cytokinesis. J Cell Sci 118, 3895–3903.PubMedCrossRefGoogle Scholar
  5. 5.
    Otegui, M. S., and Austin, J. R., II (2007) Visualization of membrane-cytoskeletal interactions during plant cytokinesis. Methods Cell Biol 79, 221–240.PubMedCrossRefGoogle Scholar
  6. 6.
    Mastronarde, D. N. (1997) Dual-axis tomography: an approach with alignment methods that preserve resolution. J Struct Biol 120, 343–352.PubMedCrossRefGoogle Scholar
  7. 7.
    Mastronarde, D. N. (2005) Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152, 36–51.PubMedCrossRefGoogle Scholar
  8. 8.
    Mastronarde, D. N. (2008) Correction for non-perpendicularity of beam and tilt axis in tomographic reconstructions with the IMOD package. J Microsc 230, 212–217.PubMedCrossRefGoogle Scholar
  9. 9.
    Kremer, J. R., Mastronarde, D. N., and McIntosh, J. R. (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116, 71–76.PubMedCrossRefGoogle Scholar
  10. 10.
    Beemster, G. T. S., and Baskin, T. I. (1998) Analysis of cell division and elongation underlying the developmental acceleration of root growth in Arabidopsis thaliana. Plant Physiol 116, 1515–1526.PubMedCrossRefGoogle Scholar
  11. 11.
    Otegui, M. S., and Staehelin, L. A. (2000) Cytokinesis in flowering plants: more than one way to divide a cell. Curr Opin Plant Biol 3, 493–502.PubMedCrossRefGoogle Scholar
  12. 12.
    Otegui, M. S., and Staehelin, L. A. (2000) Syncytial-type cell plates: a novel kind of cell plate involved in endosperm cellularization of Arabidopsis. Plant Cell 12, 933–947.PubMedGoogle Scholar
  13. 13.
    Nagata, T., Nemoto, Y., and Hasezawa, S. (1992) Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants. Int Rev Cytol 132, 1–30.CrossRefGoogle Scholar
  14. 14.
    Nagata, T., and Kumagai, F. (1999) Plant cell biology through the window of the highly synchronised tobacco BY-2 cell line. Methods Cell Sci 21, 123–127.PubMedCrossRefGoogle Scholar
  15. 15.
    Kakimoto, T., and Shibaoka, H. (1988) Cytoskeletal ultrastructure of phragmoplast-nuclei complexes isolated from cultured tobacco cells. Protoplasma S2, 95–103.CrossRefGoogle Scholar
  16. 16.
    Samuels, L. A., Giddings, T. H., and Staehelin, L. A. (1995) Cytokinesis in tobacco BY-2 and root tip cells: a new model of cell plate formation in higher plants. J Cell Biol 130, 1345–1357.PubMedCrossRefGoogle Scholar
  17. 17.
    Giddings, T. H. (2003) Freeze-substitution protocols for improved visualization of membranes in high-pressure frozen samples. J Microsc 212, 53–61.PubMedCrossRefGoogle Scholar
  18. 18.
    Moore, P. J., Darvill, A. G., Albersheim, P., and Staehelin, L. A. (1986) Immunogold localization of xyloglucan and rhamnogalacturonan I in the cell walls of suspension-­cultured sycamore cells. Plant Physiol 82, 787–794.PubMedCrossRefGoogle Scholar
  19. 19.
    Puhlmann, J., Bucheli, E., Swain, M. J., Dunning, N., Albersheim, P., Darvill, A. G., and Hahn, M.G. (1994) Generation of monoclonal antibodies against plant cell-wall polysaccharides. I. Characterization of a monoclonal antibody to a terminal alpha-(1®2)-linked fucosyl-containing epitope. Plant Physiol 104, 699–710.PubMedCrossRefGoogle Scholar
  20. 20.
    Knox, J. P., Linstead, P. J., Peart, J., Cooper, C., and Roberts, K. (1991) Developmentally regulated epitopes of cell surface arabinogalactan proteins and their relation to root tissue pattern formation. Plant J 1, 317–326.PubMedCrossRefGoogle Scholar
  21. 21.
    Smallwood, M., Yates, E. A., Willats, W. G. T., Martin, H., and Knox, J. P. (1996) Immunochemical comparison of membrane associated and secreted arabinogalactan-proteins in rice and carrot. Planta 198, 452–459.CrossRefGoogle Scholar
  22. 22.
    McEwen, B. F., and Frank, J. (2001) Electron tomographic and other approaches for imaging molecular machines. Curr Op Neurobiol 11, 594–600.PubMedCrossRefGoogle Scholar
  23. 23.
    Marsh, B. J. (2005) Lessons from tomographic studies of the mammalian Golgi. Biochim Biophys Acta 1744, 273–292.PubMedCrossRefGoogle Scholar
  24. 24.
    O’Toole, E. T., Giddings, J. T. H., Dutcher, S. K., and McIntosh, J. R. (2007) Under­standing microtubule organizing centers by comparing mutant and wild type structures with electron tomography. Methods Cell Biol 79, 125–143.PubMedCrossRefGoogle Scholar
  25. 25.
    Ladinsky, M. S., Mastronarde, D. N., McIntosh, J. R., Howell, K. E., and Staehelin, L. A. (1999) Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J Cell Biol 144, 1135–1149.PubMedCrossRefGoogle Scholar
  26. 26.
    Marsh, B. J., Mastronarde, D. N., Buttle, K. F., Howell, K. E., and McIntosh, J. R. (2001) Organellar relationship in the Golgi region of the pancreatic beta cell line, HIT-T15, visualised by high-resolution electron tomography. Proc Natl Acad Sci U S A 98, 2399–2406.PubMedCrossRefGoogle Scholar
  27. 27.
    Donohoe, B. S., Kang, B. -H., and Staehelin, L. A. (2007) Identification and characterization of COPIa- and COPIb-type vesicle classes associated with plant and algal Golgi. Proc Natl Acad Sci U S A 104, 163–168.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of BotanyUniversity of WisconsinMadisonUSA

Personalised recommendations