Advertisement

Monoclonal Antibodies, Carbohydrate-Binding Modules, and the Detection of Polysaccharides in Plant Cell Walls

  • Cécile Hervé
  • Susan E. Marcus
  • J. Paul Knox
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 715)

Abstract

Plant cell walls are diverse composites of complex polysaccharides. Molecular probes such as monoclonal antibodies (MABs) and carbohydrate-binding modules (CBMs) are important tools to detect and dissect cell wall structures in plant materials. We provide an account of methods that can be used to detect cell wall polysaccharide structures (epitopes) in plant materials and also describe treatments that can provide information on the masking of sets of polysaccharides that may prevent detection. These masking ­phenomena may indicate potential interactions between sets of cell wall polysaccharides, and methods to uncover them are an important aspect of cell wall immunocytochemistry.

Key words

Carbohydrate-binding module Cell wall immunocytochemistry Immunofluorescence microscopy Pectate lyase Plant cell walls Monoclonal antibody 

Notes

Acknowledgements

We acknowledge the funding from the UK Biotechnology & Biological Sciences Research Council.

References

  1. 1.
    Knox, J. P. (2008) Revealing the structural and functional diversity of plant cell walls. Curr Opin Plant Biol 11, 308–313.PubMedCrossRefGoogle Scholar
  2. 2.
    Boraston, A. B., Bolam, D. N., Gilbert, H. J., and Davies, G. J. (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382, 769–781.PubMedCrossRefGoogle Scholar
  3. 3.
    McCartney, L., Gilbert, H. J., Bolam, D. N., Boraston, A. B., and Knox, J. P. (2004) Glycoside hydrolase carbohydrate-binding modules as molecular probes for the analysis of plant cell wall polymers. Anal Biochem 326, 49–54.PubMedCrossRefGoogle Scholar
  4. 4.
    Marcus, S. E., Verhertbruggen, Y., Hervé, C., Ordaz-Ortiz, J. J., Farkas, V., Pedersen, H. L., Willats, W. G. T., and Knox, J. P. (2008) Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC Plant Biol 8, 60.PubMedCrossRefGoogle Scholar
  5. 5.
    Hervé, C., Rogowski, A., Gilbert, H. J., and Knox, J. P. (2009) Enzymatic treatments reveal differential capacities for xylan recognition and degradation in primary and ­secondary plant cell walls. Plant J 58, 413–422.PubMedCrossRefGoogle Scholar
  6. 6.
    Willats, W. G. T., Steele-King, C. G., Marcus, S. E., and Knox, J. P. (2002) Antibody techniques. In: Molecular Plant Biology – Volume Two: A Practical Approach (Gilmartin P. M., Bowler C. (eds)), pp 199–219, Oxford University Press, Oxford, UK.Google Scholar
  7. 7.
    Moller, I., Sørensen, I., Bernal, A. J., Blaukopf, C., Lee, K., Øbro, J., Pettolino, F., Roberts, A., Mikkelsen, J. D., Knox, J. P., Bacic, A., and Willats, W. G. T. (2007) High-throughput mapping of cell wall polymers within and between plants using novel microarrays. Plant J 50, 1118–1128.PubMedCrossRefGoogle Scholar
  8. 8.
    Steedman, H. F. (1957) A new ribboning embedding medium for histology. Nature 179, 1345.PubMedCrossRefGoogle Scholar
  9. 9.
    Meloche, C. G., Knox, J. P., and Vaughn, K. C. (2007) A cortical band of gelatinous fibers causes the coiling of redvine tendrils: a model based upon cytochemical and immunocytochemical studies. Planta 225, 485–498.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Cécile Hervé
    • 1
  • Susan E. Marcus
    • 2
  • J. Paul Knox
    • 2
  1. 1.Station Biologique de Roscoff, UMR7139 Marine Plants and BiomoleculesRoscoffFrance
  2. 2.Centre for Plant Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsUK

Personalised recommendations