Skip to main content

Measuring In Vitro Extensibility of Growing Plant Cell Walls

  • Protocol
  • First Online:
The Plant Cell Wall

Part of the book series: Methods in Molecular Biology ((MIMB,volume 715))

Abstract

This article summarizes the theory and practical aspects of measuring cell wall properties by four different extensometer techniques and how the results of these methods relate to the concept and ideal measurement of cell wall extensibility in the context of cell growth. These in vivo techniques are particularly useful for studies of the molecular basis of cell wall extension. Measurements of breaking strength, elastic compliance, and plastic compliance may be informative about changes in cell wall structure, whereas measurements of wall stress relaxation and creep are sensitive to both changes in wall structure and wall-loosening processes, such as those mediated by expansins and some lytic enzymes. A combination of methods is needed to obtain a broader view of cell wall behavior and properties connected with the concept of cell wall extensibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cosgrove, D. J. (1993) Wall extensibility: its nature, measurement, and relationship to plant cell growth. New Phytol 124, 1–23.

    Article  PubMed  CAS  Google Scholar 

  2. Geitmann, A. (2006) Experimental approaches used to quantify physical parameters at cellular and subcellular levels. Am J Bot 93, 1380–1390.

    Article  PubMed  Google Scholar 

  3. Burgert, I. (2006) Exploring the micromechanical design of plant cell walls. Am J Bot 93, 1391–1401.

    Article  PubMed  Google Scholar 

  4. Geitmann, A., and Ortega, J. K. E. (2009) Mechanics and modeling of plant cell growth. Trends Plant Sci 14, 467–478.

    Article  PubMed  CAS  Google Scholar 

  5. Ray, P. M. (1987) Principles of Plant Cell Growth. In Physiology of Cell Expansion ­during Plant Growth (Symposium in Plant Physiology, Penn State Univ), Cosgrove DJ, Knievel DJ, eds. (American Society of Plant Physiologists: Rockville), pp. 1–17.

    Google Scholar 

  6. Cosgrove, D. J. (1995) Measurements of wall stress relaxation in growing plant cells. Methods Cell Biol 49, 229–241.

    Google Scholar 

  7. Cosgrove, D. J., Van Volkenburgh, E., and Cleland, R. E. (1984) Stress relaxation of cell walls and the yield threshold for growth: demonstration and measurement by micro-pressure probe and psychrometer techniques. Planta 162, 46–52.

    Article  PubMed  CAS  Google Scholar 

  8. Cosgrove, D. J. (1987) Wall relaxation in growing stems: comparison of four species and assessment of measurement techniques. Planta 171, 266–278.

    Article  PubMed  CAS  Google Scholar 

  9. Durachko, D. M., and Cosgrove, D. J. (2009) Measuring plant cell wall extension (creep) induced by acidic pH and by alpha-expansin. J Vis Exp (25), 1263.

    Google Scholar 

  10. Abasolo, W., Eder, M., Yamauchi, K., Obel, N., Reinecke, A., Neumetzler, L., Dunlop, J. W. C., Mouille, G., Pauly, M., Höfte, H. et al. (2009) Pectin may hinder the unfolding of xyloglucan chains during cell deformation: Implications of the mechanical performance of Arabidopsis hypocotyls with pectin alterations. Mol Plant 2, 990–999.

    Article  PubMed  CAS  Google Scholar 

  11. Reiter, W. D., Chapple, C. C., and Somerville, C. R. (1993) Altered growth and cell walls in a fucose-deficient mutant of Arabidopsis. Science 261, 1032–1035.

    Article  PubMed  CAS  Google Scholar 

  12. Wainwright, S. A., Biggs, W. D., Currey, J. D., and Gosline, J. M. (1976). Mechanical Design in Organisms. (Edward Arnold: London), p. 423.

    Google Scholar 

  13. Ryden, P., Sugimoto-Shirasu, K., Smith, A. C., Findlay, K., Reiter, W. D., and McCann, M. C. (2003) Tensile properties of Arabidopsis cell walls depend on both a xyloglucan cross-linked microfibrillar network and rhamnogalacturonan II-borate complexes. Plant Physiol 132, 1033–1040.

    Article  PubMed  CAS  Google Scholar 

  14. Cavalier, D. M., Lerouxel, O., Neumetzler, L., Yamauchi, K., Reinecke, A., Freshour, G., Zabotina, O. A., Hahn, M. G., Burgert, I., Pauly, M. et al. (2008) Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component. Plant Cell 20, 1519–1537.

    Article  PubMed  CAS  Google Scholar 

  15. Zhong, R., Peña, M. J., Zhou, G. K., Nairn, C. J., Wood-Jones, A., Richardson, E. A., Morrison, W. H., III, Darvill, A. G., York, W. S., and Ye, Z. -H. (2005) Arabidopsis fragile fiber8, which encodes a putative glucuronyltransferase, is essential for normal secondary wall synthesis. Plant Cell 17, 3390–3408.

    Article  PubMed  CAS  Google Scholar 

  16. Kha, H., Tuble, S. C., Kalyanasundaram, S., and Williamson, R. E. (2010) WallGen, software to construct layered cellulose-hemicellulose networks and predict their small deformation mechanics. Plant Physiol 152, 774–786.

    Article  PubMed  CAS  Google Scholar 

  17. Veytsman, B. A., and Cosgrove, D. J. (1998) A model of cell wall expansion based on thermodynamics of polymer networks. Biophys J 75, 2240–2250.

    Article  PubMed  CAS  Google Scholar 

  18. Yuan, S., Wu, Y., and Cosgrove, D. J. (2001) A fungal endoglucanase with plant cell wall extension activity. Plant Physiol 127, 324–333.

    Article  PubMed  CAS  Google Scholar 

  19. Zerzour, R., Kroeger, J., and Geitmann, A. (2009) Polar growth in pollen tubes is associated with spatially confined dynamic changes in cell mechanical properties. Dev Biol 334, 437–446.

    Article  PubMed  CAS  Google Scholar 

  20. Bolduc, J. F., Lewis, L. J., Aubin, C. E., and Geitmann, A. (2006) Finite-element analysis of geometrical factors in micro-indentation of pollen tubes. Biomech Modeling Mechanobiol 5, 227–236.

    Article  Google Scholar 

  21. Ray, P. M., Green, P. B., and Cleland, R. E. (1972) Role of turgor in plant cell growth. Nature 239, 163–164.

    Article  Google Scholar 

  22. Cosgrove, D. J. (1985) Cell wall yield properties of growing tissues. Evaluation by in vivo stress relaxation. Plant Physiol 78, 347–356.

    Article  PubMed  CAS  Google Scholar 

  23. Yamamoto, R., Shinozaki, K., and Masuda, Y. (1970) Stress-relaxation properties of plant cell walls with special reference to auxin action. Plant Cell Physiol 11, 947–956.

    CAS  Google Scholar 

  24. Yamamoto, R., Kawamura, H., and Masuda, Y. (1974) Stress relaxation properties of the cell wall of growing intact plants. Plant Cell Physiol 15, 1073–1082.

    Google Scholar 

  25. Fujihara, S., Yamamoto, R., and Masuda, Y. (1978) Viscolelastic properties of plant cell walls II. Effect of pre-extension rate of stress relaxation. Biorheology 15, 77–85.

    PubMed  CAS  Google Scholar 

  26. Cosgrove, D. J. (1989) Characterization of long-term extension of isolated cell walls from growing cucumber hypocotyls. Planta 177, 121–130.

    Article  PubMed  CAS  Google Scholar 

  27. McQueen-Mason, S. J., and Cosgrove, D. J. (1995) Expansin mode of action on cell walls. Analysis of wall hydrolysis, stress relaxation, and binding. Plant Physiol 107, 87–100.

    PubMed  CAS  Google Scholar 

  28. Takahashi, K., Hirata, S., Kido, N., and Katou, K. (2006) Wall-yielding properties of cell walls from elongating cucumber hypocotyls in relation to the action of expansin. Plant Cell Physiol 47, 1520–1529.

    Article  PubMed  CAS  Google Scholar 

  29. McQueen-Mason, S., Durachko, D. M., and Cosgrove, D. J. (1992) Two endogenous proteins that induce cell wall expansion in plants. Plant Cell 4, 1425–1433.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported as part of The Center for Lignocellulose Structure and Formation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001090. The research on cell wall creep was supported by Award number DE-FG02-84ER13179 from the Department of Energy Office of Basic Energy Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Cosgrove .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cosgrove, D.J. (2011). Measuring In Vitro Extensibility of Growing Plant Cell Walls. In: Popper, Z. (eds) The Plant Cell Wall. Methods in Molecular Biology, vol 715. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-008-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-008-9_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-007-2

  • Online ISBN: 978-1-61779-008-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics