Advertisement

Identifying and Searching for Conserved RNA Localisation Signals

  • Russell S. Hamilton
  • Ilan Davis
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 714)

Abstract

RNA localisation is an important mode of delivering proteins to their site of function. Cis-acting signals within the RNAs, which can be thought of as zip-codes, determine the site of localisation. There are few examples of fully characterised RNA signals, but the signals are thought to be defined through a combination of primary, secondary, and tertiary structures. In this chapter, we describe a selection of computational methods for predicting RNA secondary structure, identifying localisation signals, and searching for similar localisation signals on a genome-wide scale. The chapter is aimed at the biologist rather than presenting the details of each of the individual methods.

Key words

Bioinformatics mRNA localisation RNA secondary structure 

Notes

Acknowledgement

RSH and ID are supported through a Wellcome Trust Senior Research Fellowship (081858) to ID.

References

  1. 1.
    Lecuyer, E., Yoshida, H., Parthasarathy, N., et al. (2007) Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function, Cell 131, 174–187.PubMedCrossRefGoogle Scholar
  2. 2.
    Dahm, R., Kiebler, M., and Macchi, P. (2007) RNA localisation in the nervous system, Semin Cell Dev Biol 18, 216–223.PubMedCrossRefGoogle Scholar
  3. 3.
    Hengst, U., and Jaffrey, S. R. (2007) Function and translational regulation of mRNA in developing axons, Semin Cell Dev Biol 18, 209–215.PubMedCrossRefGoogle Scholar
  4. 4.
    Jin, P., and Warren, S. T. (2003) New insights into fragile X syndrome: from molecules to neurobehaviors, Trends in Biochemical Sciences 28, 152–158.PubMedCrossRefGoogle Scholar
  5. 5.
    Paushkin, S., Gubitz, A. K., Massenet, S., and Dreyfuss, G. (2002) The SMN complex, an assemblyosome of ribonucleoproteins, Current Opinion in Cell Biology 14, 305–312.PubMedCrossRefGoogle Scholar
  6. 6.
    Mutsuddi, M., Marshall, C. M., Benzow, K. A., Koob, M. D., and Rebay, I. (2004) The Spinocerebellar Ataxia 8 Noncoding RNA Causes Neurodegeneration and Associates with Staufen in Drosophila, Current Biology 14, 302–308.PubMedGoogle Scholar
  7. 7.
    St Johnston, D. (2005) Moving messages: the intracellular localization of mRNAs, Nat Rev Mol Cell Biol 6, 363–375.PubMedCrossRefGoogle Scholar
  8. 8.
    Palacios, I. M., and St Johnston, D. (2001) Getting the message across: the intracellular localization of mRNAs in higher eukaryotes, Annu Rev Cell Dev Biol 17, 569–614.PubMedCrossRefGoogle Scholar
  9. 9.
    Palacios, I. M. (2007) How does an mRNA find its way? Intracellular localisation of transcripts, Semin Cell Dev Biol 18, 163–170.PubMedCrossRefGoogle Scholar
  10. 10.
    Van De Bor, V., Hartswood, E., Jones, C., Finnegan, D., and Davis, I. (2005) gurken and the I factor retrotransposon RNAs share common localization signals and machinery, Dev Cell 9, 51–62.CrossRefGoogle Scholar
  11. 11.
    Gavis, E. R., Lunsford, L., Bergsten, S. E., and Lehmann, R. (1996) A conserved 90 nucleotide element mediates translational repression of nanos RNA, Development 122, 2791–2800.PubMedGoogle Scholar
  12. 12.
    Kim-Ha, J., Webster, P. J., Smith, J. L., and Macdonald, P. M. (1993) Multiple RNA regulatory elements mediate distinct steps in localization of oskar mRNA, Development 119, 169–178.PubMedGoogle Scholar
  13. 13.
    Munro, T. P., Kwon, S., Schnapp, B. J., and St Johnston, D. (2006) A repeated IMP-binding motif controls oskar mRNA translation and anchoring independently of Drosophila melanogaster IMP, J Cell Biol 172, 577–588.PubMedCrossRefGoogle Scholar
  14. 14.
    Macdonald, P. M., Kerr, K., Smith, J. L., and Leask, A. (1993) RNA regulatory element BLE1 directs the early steps of bicoid mRNA localization, Development 118, 1233–1243.PubMedGoogle Scholar
  15. 15.
    Macdonald, P. M., and Struhl, G. (1988) cis-acting sequences responsible for anterior localization of bicoid mRNA in Drosophila embryos, Nature 336, 595–598.PubMedCrossRefGoogle Scholar
  16. 16.
    Serano, T. L., and Cohen, R. S. (1995) A small predicted stem-loop structure mediates oocyte localization of Drosophila K10 mRNA, Development 121, 3809–3818.PubMedGoogle Scholar
  17. 17.
    Davis, I., and Ish-Horowicz, D. (1991) Apical localization of pair-rule transcripts requires 3’ sequences and limits protein diffusion in the Drosophila blastoderm embryo, Cell 67, 927–940.PubMedCrossRefGoogle Scholar
  18. 18.
    Bullock, S. L., Zicha, D., and Ish-Horowicz, D. (2003) The Drosophila hairy RNA localization signal modulates the kinetics of cytoplasmic mRNA transport, Embo J 22, 2484–2494.PubMedCrossRefGoogle Scholar
  19. 19.
    dos Santos, G., Simmonds, A. J., and Krause, H. M. (2008) A stem-loop structure in the wingless transcript defines a consensus motif for apical RNA transport, Development 135, 133–143.PubMedCrossRefGoogle Scholar
  20. 20.
    Stombaugh, J., Zirbel, C. L., Westhof, E., and Leontis, N. B. (2009) Frequency and isostericity of RNA base pairs, Nucleic Acids Res 37, 2294–2312.PubMedCrossRefGoogle Scholar
  21. 21.
    Leontis, N. B., Lescoute, A., and Westhof, E. (2006) The building blocks and motifs of RNA architecture, Curr Opin Struct Biol 16, 279–287.PubMedCrossRefGoogle Scholar
  22. 22.
    Lemieux, S., and Major, F. (2002) RNA canonical and non-canonical base pairing types: a recognition method and complete repertoire, Nucleic Acids Res 30, 4250–4263.PubMedCrossRefGoogle Scholar
  23. 23.
    Holbrook, S. R. (2005) RNA structure: the long and the short of it, Curr Opin Struct Biol 15, 302–308.PubMedCrossRefGoogle Scholar
  24. 24.
    Nawrocki, E. P., Kolbe, D. L., and Eddy, S. R. (2009) Infernal 1.0: inference of RNA alignments, Bioinformatics 25, 1335–1337.Google Scholar
  25. 25.
    Griffiths-Jones, S. (2005) RALEE--RNA ALignment editor in Emacs, Bioinformatics 21, 257–259.PubMedCrossRefGoogle Scholar
  26. 26.
    Hamilton, R. S., and Davis, I. (2007) RNA localization signals: deciphering the message with bioinformatics, Semin Cell Dev Biol 18, 178–185.PubMedCrossRefGoogle Scholar
  27. 27.
    Eddy, S. R. (2004) How do RNA folding algorithms work?, Nat Biotechnol 22, 1457–1458.PubMedCrossRefGoogle Scholar
  28. 28.
    Zuker, M. (2000) Calculating nucleic acid secondary structure, Curr Opin Struct Biol 10, 303–310.PubMedCrossRefGoogle Scholar
  29. 29.
    Markham, N. R., and Zuker, M. (2008) UNAFold: software for nucleic acid folding and hybridization, Methods Mol Biol 453, 3–31.PubMedCrossRefGoogle Scholar
  30. 30.
    Hofacker, I. L. (2003) Vienna RNA secondary structure server, Nucleic Acids Res 31, 3429–3431.PubMedCrossRefGoogle Scholar
  31. 31.
    Zuker, M., and Stiegler, P. (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information, Nucleic Acids Res 9, 133–148.PubMedCrossRefGoogle Scholar
  32. 32.
    Do, C. B., Woods, D. A., and Batzoglou, S. (2006) CONTRAfold: RNA secondary structure prediction without physics-based models, Bioinformatics 22, e90–98.PubMedCrossRefGoogle Scholar
  33. 33.
    Ding, Y., and Lawrence, C. E. (2003) A statistical sampling algorithm for RNA secondary structure prediction, Nucleic Acids Res 31, 7280–7301.PubMedCrossRefGoogle Scholar
  34. 34.
    Knudsen, B., and Hein, J. (2003) Pfold: RNA secondary structure prediction using stochastic context-free grammars, Nucleic Acids Res 31, 3423–3428.PubMedCrossRefGoogle Scholar
  35. 35.
    Danilova, L. V., Pervouchine, D. D., Favorov, A. V., and Mironov, A. A. (2006) RNAKinetics: a web server that models secondary structure kinetics of an elongating RNA, J Bioinform Comput Biol 4, 589–596.PubMedCrossRefGoogle Scholar
  36. 36.
    Forties, R. A., and Bundschuh, R. (2009) Modeling the interplay of single-stranded binding proteins and nucleic acid secondary structure, Bioinformatics.Google Scholar
  37. 37.
    Mathews, D. H., Disney, M. D., Childs, J. L., Schroeder, S. J., Zuker, M., and Turner, D. H. (2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure, Proc Natl Acad Sci U S A 101, 7287–7292.PubMedCrossRefGoogle Scholar
  38. 38.
    Doshi, K. J., Cannone, J. J., Cobaugh, C. W., and Gutell, R. R. (2004) Evaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction, BMC Bioinformatics 5, 105.PubMedCrossRefGoogle Scholar
  39. 39.
    Dowell, R. D., and Eddy, S. R. (2004) Evaluation of several lightweight stochastic context-free grammars for RNA secondary structure prediction, BMC Bioinformatics 5, 71.PubMedCrossRefGoogle Scholar
  40. 40.
    Gardner, P. P., and Giegerich, R. (2004) A comprehensive comparison of comparative RNA structure prediction approaches, BMC Bioinformatics 5, 140.PubMedCrossRefGoogle Scholar
  41. 41.
    Gardner, P. P., Wilm, A., and Washietl, S. (2005) A benchmark of multiple sequence alignment programs upon structural RNAs, Nucleic Acids Res 33, 2433–2439.PubMedCrossRefGoogle Scholar
  42. 42.
    Bassell, G. J., and Warren, S. T. (2008) Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function, Neuron 60, 201–214.PubMedCrossRefGoogle Scholar
  43. 43.
    Darnell, J. C., Fraser, C. E., Mostovetsky, O., et al. (2005) Kissing complex RNAs mediate interaction between the Fragile-X mental retardation protein KH2 domain and brain polyribosomes, Genes Dev 19, 903–918.PubMedCrossRefGoogle Scholar
  44. 44.
    Rivas, E., and Eddy, S. R. (1999) A dynamic programming algorithm for RNA structure prediction including pseudoknots, J Mol Biol 285, 2053–2068.PubMedCrossRefGoogle Scholar
  45. 45.
    Ren, J., Rastegari, B., Condon, A., and Hoos, H. H. (2005) HotKnots: heuristic prediction of RNA secondary structures including pseudoknots, Rna 11, 1494–1504.PubMedCrossRefGoogle Scholar
  46. 46.
    Ruan, J., Stormo, G. D., and Zhang, W. (2004) An iterated loop matching approach to the prediction of RNA secondary structures with pseudoknots, Bioinformatics 20, 58–66.PubMedCrossRefGoogle Scholar
  47. 47.
    Hochsmann, M., Toller, T., Giegerich, R., and Kurtz, S. (2003) Local similarity in RNA secondary structures, Proc IEEE Comput Soc Bioinform Conf 2, 159–168.PubMedGoogle Scholar
  48. 48.
    Schultz, J., Maisel, S., Gerlach, D., Muller, T., and Wolf, M. (2005) A common core of secondary structure of the internal transcribed spacer 2 (ITS2) throughout the Eukaryota, Rna 11, 361–364.PubMedCrossRefGoogle Scholar
  49. 49.
    Schultz, J., Muller, T., Achtziger, M., Seibel, P. N., Dandekar, T., and Wolf, M. (2006) The internal transcribed spacer 2 database–a web server for (not only) low level phylogenetic analyses, Nucleic Acids Res 34, W704–707.PubMedCrossRefGoogle Scholar
  50. 50.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local alignment search tool, J Mol Biol 215, 403–410.PubMedGoogle Scholar
  51. 51.
    Gardner, P. P., Daub, J., Tate, J. G., et al. (2009) Rfam: updates to the RNA families database, Nucleic Acids Res 37, D136–140.PubMedCrossRefGoogle Scholar
  52. 52.
    Rabani, M., Kertesz, M., and Segal, E. (2008) Computational prediction of RNA structural motifs involved in posttranscriptional regulatory processes, Proc Natl Acad Sci U S A 105, 14885–14890.PubMedCrossRefGoogle Scholar
  53. 53.
    Mignone, F., Grillo, G., Licciulli, F., et al. (2005) UTRdb and UTRsite: a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs, Nucleic Acids Res 33, D141–146.PubMedCrossRefGoogle Scholar
  54. 54.
    Berman, H. M., Olson, W. K., Beveridge, D. L., et al. (1992) The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids, Biophys J 63, 751–759.Google Scholar
  55. 55.
    Hubbard, T. J. P., Aken, B. L., Ayling, S., et al. (2009) Ensembl 2009, Nucl. Acids Res. 37, D690–697.PubMedCrossRefGoogle Scholar
  56. 56.
    Stark, A., Lin, M. F., Kheradpour, P., et al. (2007) Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures, Nature 450, 219–232.PubMedCrossRefGoogle Scholar
  57. 57.
    Betley, J. N., Frith, M. C., Graber, J. H., Choo, S., and Deshler, J. O. (2002) A ubiquitous and conserved signal for RNA localization in chordates, Curr Biol 12, 1756–1761.PubMedCrossRefGoogle Scholar
  58. 58.
    Mowry, K. L., and Melton, D. A. (1992) Vegetal messenger RNA localization directed by a 340-nt RNA sequence element in Xenopus oocytes, Science 255, 991–994.PubMedCrossRefGoogle Scholar
  59. 59.
    Deshler, J. O., Highett, M. I., and Schnapp, B. J. (1997) Localization of Xenopus Vg1 mRNA by Vera protein and the endoplasmic reticulum, Science 276, 1128–1131.PubMedCrossRefGoogle Scholar
  60. 60.
    Gautreau, D., Cote, C. A., and Mowry, K. L. (1997) Two copies of a subelement from the Vg1 RNA localization sequence are sufficient to direct vegetal localization in Xenopus oocytes, Development 124, 5013–5020.PubMedGoogle Scholar
  61. 61.
    Kwon, S., Abramson, T., Munro, T. P., John, C. M., Kohrmann, M., and Schnapp, B. J. (2002) UUCAC- and vera-dependent localization of VegT RNA in Xenopus oocytes, Curr Biol 12, 558–564.PubMedCrossRefGoogle Scholar
  62. 62.
    Bailey, T. L., and Elkan, C. (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers, Proc Int Conf Intell Syst Mol Biol 2, 28–36.PubMedGoogle Scholar
  63. 63.
    Hiller, M., Pudimat, R., Busch, A., and Backofen, R. (2006) Using RNA secondary structures to guide sequence motif finding towards single-stranded regions, Nucleic Acids Res 34, e117.PubMedCrossRefGoogle Scholar
  64. 64.
    Lunde, B. M., Moore, C., and Varani, G. (2007) RNA-binding proteins: modular design for efficient function, Nat Rev Mol Cell Biol 8, 479–490.PubMedCrossRefGoogle Scholar
  65. 65.
    Bernhart, S. H., Hofacker, I. L., Will, S., Gruber, A. R., and Stadler, P. F. (2008) RNAalifold: improved consensus structure prediction for RNA alignments, BMC Bioinformatics 9, 474.PubMedCrossRefGoogle Scholar
  66. 66.
    Klein, R. J., and Eddy, S. R. (2003) RSEARCH: finding homologs of single structured RNA sequences, BMC Bioinformatics 4, 44.PubMedCrossRefGoogle Scholar
  67. 67.
    Pickard, B. S., Knight, H. M., Hamilton, R. S., et al. (2008) A common variant in the 3′UTR of the GRIK4 glutamate receptor gene affects transcript abundance and protects against bipolar disorder, Proc Natl Acad Sci U S A 105, 14940–14945.PubMedCrossRefGoogle Scholar
  68. 68.
    Macke, T. J., Ecker, D. J., Gutell, R. R., Gautheret, D., Case, D. A., and Sampath, R. (2001) RNAMotif, an RNA secondary structure definition and search algorithm, Nucleic Acids Res 29, 4724–4735.PubMedCrossRefGoogle Scholar
  69. 69.
    Hofacker, I. L., Priwitzer, B., and Stadler, P. F. (2004) Prediction of locally stable RNA secondary structures for genome-wide surveys, Bioinformatics 20, 186–190.PubMedCrossRefGoogle Scholar
  70. 70.
    Hamilton, R. S., Hartswood, E., Vendra, G., et al. (2009) A bioinformatics search pipeline, RNA2DSearch, identifies RNA localization elements in Drosophila retrotransposons, Rna 15, 200–207.PubMedCrossRefGoogle Scholar
  71. 71.
    Lambert, A., Fontaine, J. F., Legendre, M., et al. (2004) The ERPIN server: an interface to profile-based RNA motif identification, Nucleic Acids Res 32, W160-165.PubMedCrossRefGoogle Scholar
  72. 72.
    Ainger, K., Avossa, D., Diana, A. S., Barry, C., Barbarese, E., and Carson, J. H. (1997) Transport and localization elements in myelin basic protein mRNA, J Cell Biol 138, 1077–1087.PubMedCrossRefGoogle Scholar
  73. 73.
    Carson, J. H., Gao, Y., Tatavarty, V., et al. (2008) Multiplexed RNA trafficking in oligodendrocytes and neurons, Biochim Biophys Acta 1779, 453–458.PubMedCrossRefGoogle Scholar
  74. 74.
    Tiedge, H. (2006) K-turn motifs in spatial RNA coding, RNA Biol 3, 133-139.PubMedCrossRefGoogle Scholar
  75. 75.
    Cohen, R. S., Zhang, S., and Dollar, G. L. (2005) The positional, structural, and sequence requirements of the Drosophila TLS RNA localization element, Rna 11, 1017–1029.PubMedCrossRefGoogle Scholar
  76. 76.
    Larkin, M. A., Blackshields, G., Brown, N. P., et al. (2007) Clustal W and Clustal X version 2.0, Bioinformatics 23, 2947–2948.Google Scholar
  77. 77.
    Rivas, E., and Eddy, S. R. (2001) Noncoding RNA gene detection using comparative sequence analysis, BMC Bioinformatics 2, 8.PubMedCrossRefGoogle Scholar
  78. 78.
    Washietl, S., Hofacker, I. L., and Stadler, P. F. (2005) Fast and reliable prediction of noncoding RNAs, Proc Natl Acad Sci U S A 102, 2454–2459.PubMedCrossRefGoogle Scholar
  79. 79.
    Yao, Z., Weinberg, Z., and Ruzzo, W. L. (2006) CMfinder–a covariance model based RNA motif finding algorithm, Bioinformatics 22, 445–452.PubMedCrossRefGoogle Scholar
  80. 80.
    Seemann, S. E., Gorodkin, J., and Backofen, R. (2008) Unifying evolutionary and thermodynamic information for RNA folding of multiple alignments, Nucleic Acids Res 36, 6355–6362.PubMedCrossRefGoogle Scholar
  81. 81.
    Sankoff, D. (1985) Simultaneous Solution of the RNA Folding, Alignment and Protosequence Problems, SIAM Journal on Applied Mathematics 45, 810–825.CrossRefGoogle Scholar
  82. 82.
    Havgaard, J. H., Lyngso, R. B., and Gorodkin, J. (2005) The FOLDALIGN web server for pairwise structural RNA alignment and mutual motif search, Nucleic Acids Res 33, W650–653.PubMedCrossRefGoogle Scholar
  83. 83.
    Mathews, D. H. (2005) Predicting a set of minimal free energy RNA secondary structures common to two sequences, Bioinformatics 21, 2246–2253.PubMedCrossRefGoogle Scholar
  84. 84.
    Touzet, H., and Perriquet, O. (2004) CARNAC: folding families of related RNAs, Nucleic Acids Res 32, W142–145.PubMedCrossRefGoogle Scholar
  85. 85.
    Chartrand, P., Meng, X. H., Singer, R. H., and Long, R. M. (1999) Structural elements required for the localization of ASH1 mRNA and of a green fluorescent protein reporter particle in vivo, Curr Biol 9, 333–336.PubMedCrossRefGoogle Scholar
  86. 86.
    Chartrand, P., Meng, X. H., Huttelmaier, S., Donato, D., and Singer, R. H. (2002) Asymmetric sorting of ash1p in yeast results from inhibition of translation by localization elements in the mRNA, Mol Cell 10, 1319–1330.PubMedCrossRefGoogle Scholar
  87. 87.
    Gonzalez, I., Buonomo, S. B., Nasmyth, K., and von Ahsen, U. (1999) ASH1 mRNA localization in yeast involves multiple secondary structural elements and Ash1 protein translation, Curr Biol 9, 337–340.PubMedCrossRefGoogle Scholar
  88. 88.
    Olivier, C., Poirier, G., Gendron, P., Boisgontier, A., Major, F., and Chartrand, P. (2005) Identification of a conserved RNA motif essential for She2p recognition and mRNA localization to the yeast bud, Mol Cell Biol 25, 4752–4766.PubMedCrossRefGoogle Scholar
  89. 89.
    Parisien, M., and Major, F. (2008) The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data, Nature 452, 51–55.PubMedCrossRefGoogle Scholar
  90. 90.
    Koplin, J., Mu, Y., Richter, C., Schwalbe, H., and Stock, G. (2005) Structure and dynamics of an RNA tetraloop: a joint molecular dynamics and NMR study, Structure 13, 1255–1267.PubMedCrossRefGoogle Scholar
  91. 91.
    Czaplinski, K., Kocher, T., Schelder, M., Segref, A., Wilm, M., and Mattaj, I. W. (2005) Identification of 40LoVe, a Xenopus hnRNP D family protein involved in localizing a TGF-beta-related mRNA during oogenesis, Dev Cell 8, 505–515.PubMedCrossRefGoogle Scholar
  92. 92.
    Shulman-Peleg, A., Shatsky, M., Nussinov, R., and Wolfson, H. J. (2008) Prediction of interacting single-stranded RNA bases by protein-binding patterns, J Mol Biol 379, 299–316.PubMedCrossRefGoogle Scholar
  93. 93.
    Hoffman, M. M., Khrapov, M. A., Cox, J. C., Yao, J., Tong, L., and Ellington, A. D. (2004) AANT: the Amino Acid-Nucleotide Interaction Database, Nucl. Acids Res. 32, D174–181.PubMedCrossRefGoogle Scholar
  94. 94.
    Bertrand, E., Chartrand, P., Schaefer, M., Shenoy, S. M., Singer, R. H., and Long, R. M. (1998) Localization of ASH1 mRNA particles in living yeast, Mol Cell 2, 437–445.PubMedCrossRefGoogle Scholar
  95. 95.
    Jaramillo, A. M., Weil, T. T., Goodhouse, J., Gavis, E. R., and Schupbach, T. (2008) The dynamics of fluorescently labeled endogenous gurken mRNA in Drosophila, J Cell Sci 121, 887–894.PubMedCrossRefGoogle Scholar
  96. 96.
    Weil, T. T., Forrest, K. M., and Gavis, E. R. (2006) Localization of bicoid mRNA in late oocytes is maintained by continual active transport, Dev Cell 11, 251–262.PubMedCrossRefGoogle Scholar
  97. 97.
    Orengo, C. A., Pearl, F. M., and Thornton, J. M. (2003) The CATH domain structure database, Methods Biochem Anal 44, 249–271.PubMedGoogle Scholar
  98. 98.
    Horn, W. T., Tars, K., Grahn, E., et al. (2006) Structural basis of RNA binding discrimination between bacteriophages Qbeta and MS2, Structure 14, 487–495.PubMedCrossRefGoogle Scholar
  99. 99.
    Long, D., Lee, R., Williams, P., Chan, C. Y., Ambros, V., and Ding, Y. (2007) Potent effect of target structure on microRNA function, Nat Struct Mol Biol 14, 287–294.PubMedCrossRefGoogle Scholar
  100. 100.
    Heale, B. S., Soifer, H. S., Bowers, C., and Rossi, J. J. (2005) siRNA target site secondary structure predictions using local stable substructures, Nucleic Acids Res 33, e30.PubMedCrossRefGoogle Scholar
  101. 101.
    Eddy, S. R. (2004) What is a hidden Markov model?, Nat Biotechnol 22, 1315–1316.PubMedCrossRefGoogle Scholar
  102. 102.
    Eddy, S. R., and Durbin, R. (1994) RNA sequence analysis using covariance models, Nucleic Acids Res 22, 2079–2088.PubMedCrossRefGoogle Scholar
  103. 103.
    Durbin, R., Eddy, S. R., Krogh, A., and Mitchison, G. J. (1998) Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids, Cambridge University Press.CrossRefGoogle Scholar
  104. 104.
    Hofacker, I. L., Fekete, M., and Stadler, P. F. (2002) Secondary structure prediction for aligned RNA sequences, J Mol Biol 319, 1059–1066.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of BiochemistryUniversity of OxfordOxfordUK

Personalised recommendations