Advertisement

Diffusion Tensor Imaging

  • Derek K. JonesEmail author
  • Alexander Leemans
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 711)

Abstract

Diffusion tensor MRI (DT-MRI) is the only non-invasive method for characterising the microstructural organization of tissue in vivo. Generating parametric maps that help to visualise different aspects of the tissue microstructure (mean diffusivity, tissue anisotropy and dominant fibre orientation) involves a number of steps from deciding on the optimal acquisition parameters on the scanner, collecting the data, pre-processing the data and fitting the model to generating final parametric maps for entry into statistical data analysis. Here, we describe an entire protocol that we have used on over 400 subjects with great success in our laboratory. In the ‘Notes’ section, we justify our choice of the various parameters/choices along the way so that the reader may adapt/modify the protocol to their own time/hardware constraints.

Key words

Diffusion tensor MRI sampling schemes pulse sequence optimal data quality 

References

  1. 1.
    Basser, P. J., Mattiello, J., LeBihan, D. MR diffusion tensor spectroscopy and imaging. Biophys J 1994;66:259–267.PubMedCrossRefGoogle Scholar
  2. 2.
    Pierpaoli, C., Jezzard, P., Basser, P. J., Barnett, A., Di Chiro, G. Diffusion tensor MR imaging of the human brain. Radiology 1996;201:637–648.PubMedGoogle Scholar
  3. 3.
    Stejskal, E. O., Tanner, J. E. Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient. J Chem Phys 1965;42:288–292.CrossRefGoogle Scholar
  4. 4.
    Moseley, M. E., Cohen, Y. C., Kucharczyk, J., Asgari, H. S., Wendland, M. F., Tsuruda, J., Norman, D. Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 1990;176:439–445.PubMedGoogle Scholar
  5. 5.
    Pajevic, S., Pierpaoli, C. Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: Application to white matter fiber tract mapping in the human brain. Magn Reson Med 1999;42:526–540 (Erratum in: Magn Reson Med 2000 43:921).PubMedCrossRefGoogle Scholar
  6. 6.
    Mori, S., Crain, B. J., Chacko, V. P., van Zijl, P. C. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 1999;45:265–269.PubMedCrossRefGoogle Scholar
  7. 7.
    Jones, D. K., Simmons, A., Williams, S. C., Horsfield, M. A. Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI. Magn Reson Med 1999;42:37–41.PubMedCrossRefGoogle Scholar
  8. 8.
    Conturo, T. E., Lori, N. F., Cull, T. S., Akbudak, E., Snyder, A. Z., Shimony, J. S., McKinstry, R. C., Burton, H., Raichle, M. E. Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci USA 1999;96:10422–10427.PubMedCrossRefGoogle Scholar
  9. 9.
    Basser, P. J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A. In vivo fiber tractography using DT-MRI data. Magn Reson Med 2000;44:625–632.PubMedCrossRefGoogle Scholar
  10. 10.
    Parker, G. J. M., Haroon, H. A. et al. A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements. J Magn Reson Imag 2003;18:242–254.CrossRefGoogle Scholar
  11. 11.
    Reese, T. G., Heid, O., Weisskoff, R. M., Wedeen, V. J. Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med 2003;49:177–182.PubMedCrossRefGoogle Scholar
  12. 12.
    Bammer, R., Auer, M., Keeling, S. L., Augustin, M., Stables, L. A., Prokesch, R. W., Stollberger, R., Moseley, M. E., Fazekas, F. Diffusion tensor imaging using single-shot SENSE-EPI. Magn Reson Med 2002;48:128–136.PubMedCrossRefGoogle Scholar
  13. 13.
    Hiltunen, J., Hari, R., Jousmäki, V., Müller, K., Sepponen, R., Joensuu, R. Quantification of mechanical vibration during diffusion tensor imaging at 3 T. Neuroimage 2006;32:93–103.PubMedCrossRefGoogle Scholar
  14. 14.
    Pruessmann, K. P., Weiger, M., Scheidegger, M. B., Boesiger, P. SENSE: Sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952–962.PubMedCrossRefGoogle Scholar
  15. 15.
    Griswold, M. A., Jakob, P. M., Heidemann, R. M., Nittka, M., Jellus, V., Wang, K., Kiefer, B., Haase, A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002;47:1202–1210.PubMedCrossRefGoogle Scholar
  16. 16.
    Edelstein, W. A., Bottomley, P. A., Pfeifer, L. M. A signal-to-noise calibration procedure for NMR imaging systems. Med Phys 1984;11:180–185.PubMedCrossRefGoogle Scholar
  17. 17.
    Gudbjartsson, H., Patz, S. The Rician distribution of noisy MRI data. Magn Reson Med 1995;34:910–914.PubMedCrossRefGoogle Scholar
  18. 18.
    Dietrich, O., Heiland, S., Sartor, K. Noise correction for the exact determination of apparent diffusion coefficients at low SNR. Magn Reson Med 2001;45:448–453.PubMedCrossRefGoogle Scholar
  19. 19.
    Jones, D. K., Basser, P. J. “Squashing peanuts and smashing pumpkins”: How noise distorts diffusion-weighted MR data. Magn Reson Med 2004;52:979–993.PubMedCrossRefGoogle Scholar
  20. 20.
    Basser, P. J., Pierpaoli, C. Microstructural and physiological features of tissue elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 1996;111:209–219.PubMedCrossRefGoogle Scholar
  21. 21.
    Jones, D. K., Horsfield, M. A., Simmons, A. Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med 1999;42:515–525.PubMedCrossRefGoogle Scholar
  22. 22.
    Jones, D. K. The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: A Monte Carlo study. Magn Reson Med 2004;51:807–815.PubMedCrossRefGoogle Scholar
  23. 23.
    Conturo, T. E., McKinstry, R. C., Akbudak, E., Robinson, B. H. Encoding of anisotropic diffusion with tetrahedral gradients: A general mathematical diffusion formalism and experimental results. Magn Reson Med 1996;35:399–412.PubMedCrossRefGoogle Scholar
  24. 24.
    Cook, P. A., Symms, M., Boulby, P. A., Alexander, D. C. Optimal acquisition orders of diffusion-weighted MRI measurements. J Magn Reson Imaging 2007;25:51–58.CrossRefGoogle Scholar
  25. 25.
    Dubois, J., Poupon, C., Lethimonnier, F., Le Bihan, D. Optimized diffusion gradient orientation schemes for corrupted clinical DTI data sets. Magma 2006;19:134–143.PubMedCrossRefGoogle Scholar
  26. 26.
    Cook, P. A., Bai, Y., Nedjati-Gilani, S., Seunarine, K. K., Hall, M. G., Parker, G. J., Alexander, D. C. (2006) Camino: Open-Source Diffusion-MRI Reconstruction and Processing, 14th Scientific Meeting of the International Society for Magnetic Resonance in Medicine, Seattle, WA, USA, p. 2759, May 2006.Google Scholar
  27. 27.
    Pierpaoli, C., Basser, P. J. Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 1996;36:893–906.PubMedCrossRefGoogle Scholar
  28. 28.
    Turner, R., Le Bihan, D., Maier, J., Vavrek, R., Hedges, L. K., Pekar, J. Echo-planar imaging of intravoxel incoherent motions. Radiology 1990;177:407–414.PubMedGoogle Scholar
  29. 29.
    Skare, S., Andersson, J. L. On the effects of gating in diffusion imaging of the brain using single shot EPI. Magn Reson Imaging 2001;19:1125–1128.PubMedCrossRefGoogle Scholar
  30. 30.
    Pierpaoli, C., Marenco, S., Rohde, G., Jones, D. K., Barnett, A. S. (2003). Analyzing the contribution of cardiac pulsation to the variability of quantities derived from the diffusion tensor in “Proc. ISMRM 11th Annual Meeting, Toronto” p. 70.Google Scholar
  31. 31.
    Jones, D. K., Pierpaoli, C. (2005) The contribution of cardiac pulsation to variability in tractography results. In “Proc. ISMRM 13th Annual Meeting, Miami”, p. 225.Google Scholar
  32. 32.
    Poncelet, B. P., Wedeen, V. J., Weisskoff, R. M., Cohen, M. S. Brain parenchyma motion: Measurement with cine echo-planar MR imaging. Radiology 1992;185:645–651.PubMedGoogle Scholar
  33. 33.
    Enzmann, D. R., Pelc, N. J. Brain motion: Measurement with phase-contrast MR imaging. Radiology 1992;185:653–660.PubMedGoogle Scholar
  34. 34.
    Rohde, G. K., Barnett, A. S., Basser, P. J., Marenco, S., Pierpaoli, C. Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI. Magn Reson Med 2004;51:103–114.PubMedCrossRefGoogle Scholar
  35. 35.
    Andersson, J. L., Skare, S. A model-based method for retrospective correction of geometric distortions in diffusion-weighted EPI. Neuroimage 2002;16:177–199.PubMedCrossRefGoogle Scholar
  36. 36.
    Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P. Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 1997;16:187–198.PubMedCrossRefGoogle Scholar
  37. 37.
    Studholme, C., Constable, R. T., Duncan, J. S. Accurate alignment of functional EPI data to anatomical MRI using a physics-based distortion model. IEEE Trans Med Imaging 2000;19:1115–1127.PubMedCrossRefGoogle Scholar
  38. 38.
    Leemans, A., Jones, D. K. The B-matrix must be rotated when motion correcting diffusion tensor imaging data. Magn Reson Med 2009;61:1336–1349.PubMedCrossRefGoogle Scholar
  39. 39.
    Koay, C. G., Chang, L. C., Carew, J. D., Pierpaoli, C., Basser, P. J. A unifying theoretical and algorithmic framework for least squares methods of estimation in diffusion tensor imaging. J Magn Reson 2006;182: 115–125.PubMedCrossRefGoogle Scholar
  40. 40.
    Bevington, P. R., Robinson, D. K. Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. New York, NY: McGraw-Hill; 1992.Google Scholar
  41. 41.
    Leemans, A., Evans, C. J., Jones, D. K. (2008). Quality assessment through analysis of residuals of diffusion image fitting. In “Proc. ISMRM 16th Annual Meeting, Toronto”. p. 3300.Google Scholar
  42. 42.
    Hasan, K. M., Alexander, A. L., Narayana, P. A. Does fractional anisotropy have better noise immunity characteristics than relative anisotropy in diffusion tensor MRI? An analytical approach. Magn Reson Med 2004;51:413–417.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff UniversityCardiffUK
  2. 2.Image Sciences Institute, University Medical Center UtrechtUtrechtThe Netherlands

Personalised recommendations