Advertisement

Pine Somatic Embryogenesis Using Zygotic Embryos as Explants

  • Gerald S. PullmanEmail author
  • Kylie Bucalo
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 710)

Abstract

Somatic embryogenesis (SE) has the potential to be the lowest-cost method to rapidly produce large numbers of high-value somatic seedlings with desired characteristics for plantation forestry. At least 24 of the 115–120 known Pinus species can undergo SE. Initiation for most species works best with immature megagametophytes as starting material, although a few pines can initiate SE cultures from isolated mature seed embryos. Successful initiation depends heavily on explant type, embryo developmental stage, and medium salt base. Most first reports of initiation used 2,4-D and BAP or a combination of cytokinins. More recent reports have optimized initiation for many Pinus spp., but still use mostly the combinations of auxin and cytokinins. Initiation can be stimulated with medium supplements including abscisic acid (ABA), brassinosteroids, ethylene inhibitors, gibberellin inhibitors, organic acids, putrescine, specific sugar types (maltose, galactose, d-chiro-inositol, and d-xylose), triacontanol, vitamins (B12, biotin, vitamin E, and folic acid), or manipulation of environmental factors including pH, water potential, cone cold storage, gelling agent concentration, and liquid medium. Embryo development and maturation usually occur best on medium containing ABA along with water potential reduction (with sugars and polyethylene glycol) or water availability reduction (with raised gelling agent increasing gel-strength). Activated carbon and maltose may also improve embryo maturation. The main issues holding SE technology back are related to the high cost of producing a somatic seedling, incurred from low initiation percentages for recalcitrant species, culture loss, and decline after initiation and poor embryo maturation resulting in no or poor germination. Although vast progress has been made in pine SE technology over the past 24 years, fundamental studies on seed and embryo physiology, biochemistry, and gene expression are still needed to help improve the technology to a point where large-scale commercialization is economically viable for a broad range of pine species.

Key words

Conifer Embryogenesis Pinus Somatic embryogenesis 

References

  1. 1.
    Gernandt DS, Geada López G, Ortiz García S, Liston A (2005) Phylogeny and classification of Pinus. Taxon 54:29–42Google Scholar
  2. 2.
    Shultz RP (1999) Loblolly – the pine for the twenty-first century. New For 17:71–88Google Scholar
  3. 3.
    Tautorus TE, Fowke LC, Dunstan DI (1991) Somatic embryogenesis in conifers. Can J Bot 69:1873–1899Google Scholar
  4. 4.
    Attree SM, Fowke LC (1993) Embryogeny of gymnosperms: advances in synthetic seed technology of conifers. Plant Cell Tissue Organ Cult 35:1–35Google Scholar
  5. 5.
    Gupta PK, Grob JA (1995) Somatic embryogenesis in conifers. In: Jain S, Gupta P, Newton R (eds) Somatic embryogenesis in woody plants, vol 1. Kluwer Academic Publishers, Dordrecht, pp 81–98Google Scholar
  6. 6.
    von Aderkas P, Bonga JM (2000) Influencing micropropagation and somatic embryogenesis in mature trees by manipulation of phase change, stress and culture environment. Tree Physiol 20:921–928Google Scholar
  7. 7.
    von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tissue Organ Cult 69:233–249Google Scholar
  8. 8.
    Stasolla C, Kong L, Yeung EC, Thorpe TA (2002) Maturation of somatic embryos in ­conifers: morphogenesis, physiology, ­biochemistry and molecular biology. In Vitro Cell Dev Biol Plant 38:93–105Google Scholar
  9. 9.
    Zoglauer K, Behrendt U, Rahmat A, Ross H, Taryono (2003) Somatic embryogenesis – the gate to biotechnology in conifers. In: Laimer M, Rücker W (eds) Plant tissue culture, 100 years since Gottlieb Haberlandt. Springer Wien, New York, pp 175–202Google Scholar
  10. 10.
    Stasolla C, Yeung EC (2003) Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tissue Organ Cult 74:15–35Google Scholar
  11. 11.
    Jimenez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47:91–100Google Scholar
  12. 12.
    Haggman H, Vuosku J, Sarjala T, Jokela A, Niemi K (2005) Somatic embryogenesis of pine species: from functional genomics to plantation forestry. In: Mujib A, Samaj J (eds) Plant cell monograph, vol 2. Springer, Berlin, pp 119–140Google Scholar
  13. 13.
    Finer JJ, Kriebel HB, Becwar MR (1989) Initiation of embryogenic callus and suspension cultures of eastern white pine (Pinus strobus L.). Plant Cell Rep 8:203–206Google Scholar
  14. 14.
    Klimaszewska K, Smith DR (1997) Maturation of somatic embryos of Pinus strobus is promoted by a high concentration of gellan gum. Physiol Plant 100:949–957Google Scholar
  15. 15.
    Bercetche J, Paques M (1995) Somatic embryogenesis in maritime pine (Pinus pinaster). In: Jain S, Gupta P, Newton R (eds) Somatic embryogenesis in woody plants, vol 3. Kluwer Academic Publishers, Dordrecht, pp 221–242Google Scholar
  16. 16.
    Lelu MA, Bastien C, Drugeault A, Gouez ML, Klimaszewska K (1999) Somatic embryogenesis and plantlet development in Pinus sylvestris and Pinus pinaster on medium with and without growth regulators. Physiol Plant 105:719–728Google Scholar
  17. 17.
    Miguel C, Goncalves S, Tereso S, Marum L, Maroco J, Oliveria MM (2004) Somatic embryogenesis from 20 open-pollinated families of Portuguese plus trees of maritime pine. Plant Cell Tissue Organ Cult 76:121–130Google Scholar
  18. 18.
    Keinonen-Mettala K, Jalonen P, Eurola P, von Arnold S, von Weissenberg K (1996) Somatic embryogenesis of Pinus sylvestris. Scand J For Res 11:242–250Google Scholar
  19. 19.
    Haggman H, Jokela A, Krajnakova J, Kauppi A, Niemi K, Aronen T (1999) Somatic embryogenesis of Scots pine: cold treatment and characteristics of explants affecting induction. J Exp Bot 50:1769–1778Google Scholar
  20. 20.
    Laine E, David A (1990) Somatic ­embryogenesis in immature embryos and protoplasts of Pinus caribaea. Plant Sci 69:215–224Google Scholar
  21. 21.
    Becwar MR, Nagmani R, Wann SR (1990) Initiation of embryogenic cultures and somatic embryo development in loblolly pine (Pinus taeda). Can J For Res 20:810–817Google Scholar
  22. 22.
    Pullman GS, Johnson S (2002) Somatic embryogenesis in loblolly pine (Pinus taeda L.): improving culture initiation rates. Ann For Sci 59:663–668Google Scholar
  23. 23.
    Percy RE, Klimaszewska K, Cyr DR (2000) Evaluation of somatic embryogenesis for clonal propagation of western white pine. Can J For Res 30:1867–1876Google Scholar
  24. 24.
    Malabadi RB, Nataraja K (2007) Putrescine influences somatic embryogenesis and plant regeneration in Pinus geradiana Wall. Am J Plant Physiol 2:107–114Google Scholar
  25. 25.
    Malabadi RB, Choudhury H, Tandon P (2002) Plant regeneration via somatic embryogenesis in Pinus kesiya (Royle ex. Grod.). Appl Biol Res 4:1–10Google Scholar
  26. 26.
    Bozhkov PV, Ahn IS, Park YG (1997) Two alternative pathways of somatic embryo origin from polyembryonic mature stored seeds of Pinus koraiensis Sieb et Zucc. Can J Bot 75:509–512Google Scholar
  27. 27.
    Gupta PK, Durzan DJ (1986) Somatic polyembryogenesis from callus of mature sugar pine embryos. Biotechnology 4:643–645Google Scholar
  28. 28.
    Huang J-Q, Wei Z-M, Xu Z-H (1995) Somatic embryogenesis and plantlet regeneration from callus of mature zygotic embryos of masson pine. Acta Bot Sin 37:289–294Google Scholar
  29. 29.
    Radojevic L, Alvarez C, Fraga MF, Rodriguez R (1999) Somatic embryogenic tissue establishment from mature Pinus nigra Arn. Spp. Salzmannii embryos. In Vitro Cell Dev Biol Plant 35:206–209Google Scholar
  30. 30.
    Garin E, Isabel N, Plourde A (1998) Screening of large numbers of seed families of Pinus strobus L. for somatic embryogenesis from immature and mature zygotic embryos. Plant Cell Rep 18:37–43Google Scholar
  31. 31.
    Tang W, Guo Z, Ouyang F (2001) Plant regeneration from embryogenic cultures initiated from mature loblolly pine zygotic embryos. In Vitro Cell Dev Biol Plant 37:558–563Google Scholar
  32. 32.
    Malabadi RB, Nataraja K (2007) 24-Epibrassinolide induces somatic embryogenesis in Pinus wallichiana A. B. Jacks. J Plant Sci 2:171–178Google Scholar
  33. 33.
    Malabadi RB, Choudhury H, Tandon P (2004) Initiation, maintenance and maturation of somatic embryos from thin apical dome sections in Pinus kesiya (Royle ex. Gord) promoted by partial desiccation and gellan gum. Sci Hort 102:449–459Google Scholar
  34. 34.
    Aronen T, Pehkonen T, Malabadi R, Ryynanen L (2008) Somatic embryogenesis of Scots pine – advances in pine tissue culture at Metla. In: Proceedings of the Nordic meeting on vegetative propagation of conifers for enhancing landscaping and tree breeding, Punkaharju, Finland, pp 68–71, 10–11 Sept 2008Google Scholar
  35. 35.
    Malabadi RB, van Staden J (2005) Somatic embryogenesis from vegetative shoot apices of mature trees of Pinus patula. Tree Physiol 25:11–16PubMedGoogle Scholar
  36. 36.
    Malabadi RB, Nataraja K (2006) Cryopreservation and plant regeneration via somatic embryogenesis using shoot apical domes of mature Pinus roxburghii Sarg. trees. In Vitro Cell Biol Plant 42:152–159Google Scholar
  37. 37.
    Becwar MR, Pullman GS (1995) Somatic embryogenesis in loblolly pine (Pinus taeda L.). In: Mohan JS, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, Vol 3 – Gymnosperms. Kluwer Academic Publishers, Dordrecht, pp 287–301Google Scholar
  38. 38.
    Pullman GS, Johnson S, Van Tassel S, Zhang Y (2005) Somatic embryogenesis in loblolly pine (Pinus taeda L.) and Douglas fir (Pseudotsuga menziesii): Improving culture initiation with MES pH buffer, biotin, and folic acid. Plant Cell Tissue Organ Cult 80:91–103Google Scholar
  39. 39.
    Pullman GS, Chopra R, Chase KM (2006) Loblolly pine (Pinus taeda L.) somatic embryogenesis: improvements in embryogenic tissue initiation by supplementation of medium with organic acids, Vitamins B12 and E. Plant Sci 170:648–658Google Scholar
  40. 40.
    Handley L III (1997) Method for regeneration of coniferous plants by somatic embryogenesis in culture media containing abscisic acid. US Patent 5,677,185, 14 Oct 1997Google Scholar
  41. 41.
    Handley L III (1999) Method for regeneration of coniferous plants by somatic embryogenesis in culture media containing abscisic acid. US Patent 5,856,191, 5 Jan 1999Google Scholar
  42. 42.
    Pullman GS, Namjoshi K, Zhang Y (2003) Somatic embryogenesis in loblolly pine (Pinus taeda L.): improving culture initiation with abscisic acid, silver nitrate, and cytokinin adjustments. Plant Cell Rep 22:85–95PubMedGoogle Scholar
  43. 43.
    Pullman GS, Zhang Y, Phan B (2003) Brassinolide improves embryogenic tissue initiation in conifers and rice. Plant Cell Rep 22:96–104PubMedGoogle Scholar
  44. 44.
    Malabadi RB, Nataraja K (2007) Plant regeneration via somatic embryogenesis using secondary needles of mature trees of Pinus roxburghii Sarg. Int J Bot 3:40–47Google Scholar
  45. 45.
    Pullman GS, Montello P, Cairney J, Xu N, Feng X (2003) Loblolly pine (Pinus taeda L.) somatic embryogenesis: maturation improvements by metal analyses of zygotic and somatic embryos. Plant Sci 164:955–969Google Scholar
  46. 46.
    Nagmani R, Diner AM, Sharma GC (1993) Somatic embryogenesis in longleaf pine (Pinus palustris). Can J For Res 23:873–876Google Scholar
  47. 47.
    Denchev P, Attree SM, Kong L, Tsai CJ, Radley RA, Lobatcheva II (2004) Method for reproducing conifers by somatic embryogenesis using galactose containing compounds as a carbon and energy source. US Patent 20040203150A1, 14 Oct 2004 (patent pending)Google Scholar
  48. 48.
    Gupta PK, Holmstrom DG, Budworth D (2004) Embryogenic culture initiation of Douglas-fir by maltose. US Patent 20040237130, 25 Nov 2004 (patent pending)Google Scholar
  49. 49.
    Salajova T, Salaj J (2005) Somatic embryogenesis in Pinus nigra: embryogenic tissue initiation, maturation and regeneration ability of established cell lines. Biol Plant 49:333–339Google Scholar
  50. 50.
    Steiner N, Vieira FDN, Maldonado S, Guerra MP (2005) Effect of carbon source on morphology and histodifferentiation of Araucaria angustifolia embryogenic cultures. Braz Arch Biol Technol 48:895–903Google Scholar
  51. 51.
    Pullman GS, Chase KM, Skryabina A, Bucalo K (2008) Conifer embryogenic tissue initiation: improvements by supplementation of medium with d-chiro-inositol and d-xylose. Tree Physiol 29:147–156PubMedGoogle Scholar
  52. 52.
    Pullman GS, Mein J, Johnson S, Zhang Y (2005) Gibberellin inhibitors improve embryogenic tissue initiation in conifers. Plant Cell Rep 23:596–605PubMedGoogle Scholar
  53. 53.
    Chandler SF, Young R (1995) Somatic embryogenesis in Pinus radiata Don. In: Jain S, Gupta P, Newton R (eds) Somatic embryogenesis in woody plants, vol 3. Kluwer Academic Publishers, Dordrecht, pp 243–255Google Scholar
  54. 54.
    Pullman GS (1997) Osmotic measurements of whole ovules during loblolly pine embryo development. In: TAPPI biological sciences symposium, San Francisco, CA, pp 41–48, 19–23 Oct 1997Google Scholar
  55. 55.
    Pullman GS, Johnson S (2009) Osmotic measurements in whole megagametophytes and embryos of loblolly pine (Pinus taeda L.) during embryo and seed development. Tree Physiology 29:819–827Google Scholar
  56. 56.
    Van Winkle SC, Pullman GS (2003) The combined impact of pH and activated carbon on the elemental composition of plant tissue culture media. Plant Cell Rep 22:303–311PubMedGoogle Scholar
  57. 57.
    Pullman GS, Johnson S (2009) Loblolly pine (Pinus taeda L.) female gametophyte and embryo pH changes during embryo and seed development. Tree Physiology 29:829–836Google Scholar
  58. 58.
    Xu N, Johns B, Pullman GS, Cairney J (1997) Rapid and reliable differential display from minute amounts of tissue: mass cloning and characterization of differentially expressed genes from loblolly pine embryos. Plant Mol Biol Rep 15:377–391Google Scholar
  59. 59.
    Cairney J, Xu N, MacKay J, Pullman G (2000) Transcript profiling: a tool to assess the development of conifer embryos. In Vitro Cell Dev Biol Plant 36:155–162Google Scholar
  60. 60.
    Pullman GS, Peter G (2002) Methods of initiating embryogenic cultures in plants. US Patent 6,492,174B1, 8 Oct 2002Google Scholar
  61. 61.
    Pullman GS, Johnson S, Peter G, Cairney J, Xu N (2003) Improving loblolly pine somatic embryo maturation: comparison of somatic and zygotic embryo morphology, germination, and gene expression. Plant Cell Rep 21:747–758PubMedGoogle Scholar
  62. 62.
    Van Winkle S, Johnson S, Pullman GS (2003) The impact of Gelrite and activated carbon on the elemental composition of plant tissue culture media. Plant Cell Rep 21:1175–1182PubMedGoogle Scholar
  63. 63.
    Pullman GS, Peter G (2006) Methods for increasing conifer somatic embryo initiation, capture, and multiplication. US Patent 20060051868, 9 March 2006Google Scholar
  64. 64.
    Pullman GS, Skryabina A (2007) Liquid medium and liquid overlays improve embryogenic tissue initiation in conifers. Plant Cell Rep 26:873–887PubMedGoogle Scholar
  65. 65.
    Cairney J, Pullman GS (2007) The cellular and molecular biology of conifer embryogenesis. New Phytol 176:511–536PubMedGoogle Scholar
  66. 66.
    Klimaszewska K, Trontin JF, Becwar MR, Devillard C, Park YS, Lelu-Walter MA (2007) Recent progress in somatic embryogenesis of four Pinus spp. Tree For Sci Biotechnol 1:11–25Google Scholar
  67. 67.
    Vales T, Fang X, Ge L, Xu N, Cairney J, Pullman GS, Peter GF (2007) Improved somatic embryo maturation in loblolly pine by monitoring ABA-responsive gene expression. Plant Cell Rep 26:133–143PubMedGoogle Scholar
  68. 68.
    Pullman GS, Gupta PK (1991) Method for reproducing coniferous plants by somatic embryogenesis using adsorbent materials in the development stage. US Patent 5034326, 23 July 1991Google Scholar
  69. 69.
    Gupta PK, Pullman GS (1991) Method for reproducing coniferous plants by somatic embryogenesis using abscisic acid and osmotic potential variation. US Patent 5036007, 30 July 1991Google Scholar
  70. 70.
    Pullman GS, Gupta PK, Timmis R, Carpenter C, Kreitinger M, Welty E (2005) Improved Norway spruce somatic embryo development through the use of abscisic acid combined with activated carbon. Plant Cell Rep 24:271–279PubMedGoogle Scholar
  71. 71.
    Lelu-Walter MA, Bernier-Cardou M, Klimaszewska K (2006) Simplified and improved somatic embryogenesis for clonal propagation of Pinus pinaster (Ait.). Plant Cell Rep 25:767–776PubMedGoogle Scholar
  72. 72.
    Bradford KJ (1994) Water stress and the water relations of seed development: a critical review. Crop Sci 34:1–11Google Scholar
  73. 73.
    Gates JC, Greenwood MS (1991) The physical and chemical environment of the developing embryo of Pinus resinosa. Am J Bot 78:1002–1009Google Scholar
  74. 74.
    Dumont-BeBoux N, Mazari A, Livingston NJ, von Aderkas P, Becwar MR, Percy RE, Pond SE (1996) Water relations parameters and tissue development in somatic and zygotic embryos of three pinaceous conifers. Am J Bot 83:992–996Google Scholar
  75. 75.
    Klimaszewska K, Bernier-Cardou M, Cyr DR, Sutton BCS (2000) Influence of gelling agents on culture medium gel strength, water availability, tissue water potential, and maturation response in embryogenic cultures of Pinus strobus L. In Vitro Cell Dev Biol Plant 36:279–286Google Scholar
  76. 76.
    Klimaszewska KK, Park YS, Overton C, MacEacheron I, Bonga JM (2001) Optimized somatic embryogenesis in Pinus strobus L. In Vitro Cell Dev Biol Plant 37:392–399Google Scholar
  77. 77.
    Belmonte MF, Macey J, Yeung EC, Stasolla C (2005) The effect of osmoticum on ascorbate and glutathione metabolism during white spruce (Picea glauca) somatic embryo development. Plant Physiol Biochem 43:337–346PubMedGoogle Scholar
  78. 78.
    Kreuger M, van Holst GJ (1993) Arabinogalactan proteins are essential in somatic embryogenesis of Dacus carota L. Planta 189:243–248Google Scholar
  79. 79.
    Showalter AM (2001) Arabinogalactan-proteins: structure, expression and function. Cell Mol Life Sci 58:1399–1417PubMedGoogle Scholar
  80. 80.
    von Arnold S, Bozhkov P, Clapham D, Dyachok J, Filonova L, Högberg KA, Ingouff M, Wiweger M (2005) Propagation of Norway spruce via somatic embryogenesis. Plant Cell Tissue Organ Cult 81:323–329Google Scholar
  81. 81.
    Kong L, Attree SM, Evans DE, Binarova P, Yeung EC, Fowke LC (1999) Somatic embryogenesis in white spruce: studies of embryo development and cell biology. In: Mohan JS, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 4. Kluwer Academic Publishers, Dordrecht, pp 1–28Google Scholar
  82. 82.
    Kong L, Yeung EC (1994) Effects of ethylene and ethylene inhibitors on white spruce somatic embryo maturation. Plant Sci 104:71–80Google Scholar
  83. 83.
    Kong L, Yeung EC (1995) Effects of silver nitrate and poly ethylene glycol on white spruce (Picea glauca) somatic embryo development: enhancing cotyledonary embryo formation and endogenous ABA content. Physiol Plant 93:298–304Google Scholar
  84. 84.
    El Meskaoui A, Desjardins Y, Tremblay FM (2000) Kinetics of ethylene biosynthesis and its effects during maturation of white spruce somatic embryos. Physiol Plant 109:333–342Google Scholar
  85. 85.
    Jones NB, van Staden J (1995) Plantlet production from somatic embryos of Pinus patula. J Plant Physiol 145:519–525Google Scholar
  86. 86.
    Timmis R (1998) Bioprocessing for tree production in the forest industry: conifer somatic embryogenesis. Biotechnol Prog 14:156–166Google Scholar
  87. 87.
    Carlson WC, Hartle JE (1995) Manufactured seed of woody plants. In: Jain S, Gupta P, Newton R (eds) Somatic embryogenesis in woody plants, vol 3. Kluwer Academic Publishers, Dordrecht, pp 253–263Google Scholar
  88. 88.
    Hay EI, Charest PJ (1999) Somatic embryo germination and desiccation tolerance in conifers. In: Mohan JS, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 4. Kluwer Academic Publishers, Dordrecht, pp 61–69Google Scholar
  89. 89.
    Gupta PK, Holmstrom DG, Larson B, Zucati J (2005) Development and stratification of pine somatic embryos using a liquid system. US Patent 20050026281, 3 Feb 2005Google Scholar
  90. 90.
    Merkle SA, Montello PM, Xia X, Upchurch BL, Smith DR (2006) Light quality treatments enhance somatic seedling production in three southern pine species. Tree Physiol 26:187–194PubMedGoogle Scholar
  91. 91.
    Niemi K, Haggman H (2002) Pisolithus tinctorius promotes germination and forms mycorrhizal structures in Scots pine somatic embryos in vitro. Mycorrhiza 12:263–267PubMedGoogle Scholar
  92. 92.
    Stasolla C, Yeung EC (1999) Ascorbic acid improves conversion of white spruce somatic embryos. In Vitro Cell Dev Biol Plant 35:316–319Google Scholar
  93. 93.
    Kartha KK, Fowke LC, Leung NL, Caswell KL, Hakman I (1988) Induction of somatic embryos and plantlets from cryopreserved cell cultures of white spruce (Picea abies). J Plant Physiol 132:529–539Google Scholar
  94. 94.
    Gupta PK, Durzan DJ (1987) Biotechnology of somatic polyembryogenesis and plantlet regeneration in loblolly pine. Biotechnology 5:147–151Google Scholar
  95. 95.
    Kapik RH, Dinus RJ, Dean JF (1995) Abscisic acid and zygotic embryogenesis in Pinus taeda. Tree Physiol 15:405–409Google Scholar
  96. 96.
    Pullman GS, Buchanan M (2006) Identification and quantitative analysis of stage-specific organic acids in loblolly pine (Pinus taeda L.) zygotic embryo and female gametophyte. Plant Sci 170:634–647Google Scholar
  97. 97.
    Pullman GS, Buchanan M (2008) Identification and quantitative analysis of stage-specific carbohydrates in loblolly pine (Pinus taeda) zygotic embryo and female gametophyte tissues. Tree Physiol 28:985–996PubMedGoogle Scholar
  98. 98.
    Carman JG, Reese G, Fuller RJ, Ghermay J, Timmis R (2005) Nutrient and hormone levels in Douglas-fir corrosion cavities, megagametophytes, and embryos during embryony. Can J For Res 35:2447–2456Google Scholar
  99. 99.
    Pullman GS, Cairney J, Peter G (1998) Clonal forestry and genetic engineering: where we stand, future prospects, and potential impacts on mill operations. TAPPI J 81:57–64Google Scholar
  100. 100.
    Pullman GS, Webb DT (1994) An embryo staging system for comparison of zygotic and somatic embryo development. In: TAPPI R&D division biological sciences symposium, Minneapolis, Minnesota, pp 31–34, 3–6 Oct 1994Google Scholar
  101. 101.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497Google Scholar
  102. 102.
    Pullman GS, Johnson S, Bucalo K (2009) Douglas fir embryogenic tissue initiation. Plant Cell Tissue Organ Cult 96:75–84Google Scholar
  103. 103.
    Maruyama E, Hosoi Y, Ishii K (2007) Somatic embryogenesis and plant regeneration in yakutanegoyou, Pinus armandii Franch. var. amamiana (Koidz.) Hatusima, an endemic and endangered species in Japan. In Vitro Cell Dev Biol Plant 43:28–34Google Scholar
  104. 104.
    Park YS, Bonga JM, Cameron SI, Barrett JD, Forbes K, DeVerno LL, Klimaszewska K (1999) Somatic embryogenesis in Jack pine (Pinus banksiana Lamb). In: Jain S, Gupta P, Newton R (eds) Somatic embryogenesis in woody plants, vol 4. Kluwer Academic Publishers, Dordrecht, pp 491–504Google Scholar
  105. 105.
    Yildrim T, Kaya Z, Isik K (2006) Induction of embryogenic tissue and maturation of somatic embryos in Pinus brutia TEN. Plant Cell Tissue Organ Cult 87:67–76Google Scholar
  106. 106.
    Zang C-X, Li Q, Kong L (2007) Induction, development and maturation of somatic embryos in Bunge’s pine (Pinus bungeana Zucc. Ex Endl.). Plant Cell Tissue Organ Cult 91:273–280Google Scholar
  107. 107.
    Laine E, David A (1992) Recovery of plants from cryopreserved embryogenic cell suspensions of Pinus caribaea. Plant Cell Rep 11:295–298Google Scholar
  108. 108.
    David A, Laine E, David H (1995) Somatic embryogenesis in Pinus caribaea. In: Jain S, Gupta P, Newton R (eds) Somatic embryogenesis in woody plants, vol 3. Kluwer Academic Publishers, Dordrecht, pp 145–181Google Scholar
  109. 109.
    Taniguchi T (2001) Plant regeneration from somatic embryos in Pinus thunbergii (Japanese black pine) and Pinus densiflora (Japanese red pine). In: Morohoshi N, Komamine A (eds) Molecular breeding of woody plants. Elsevier, Amsterdam, pp 319–324Google Scholar
  110. 110.
    Ishii K, Maruyama K, Hosoi Y (2001) Somatic embryogenesis of Japanese conifers. In: Morohoshi N, Komamine A (eds) Molecular breeding of woody plants. Elsevier science, Amsterdam, pp 297–304Google Scholar
  111. 111.
    Maruyama E, Hosoi Y, Ishii K (2005) Propagation of Japanese red pine (Pinus densiflora Zieb.et.Zucc.) via somatic embryogenesis. Prop Ornam Plants 5:199–204Google Scholar
  112. 112.
    Shoji M, Sato H, Nakagawa R, Funada R, Kubo T, Ogita S (2006) Influence of osmotic pressure on somatic embryo maturation in Pinus densiflora. J For Res 11:449–453Google Scholar
  113. 113.
    Jain M, Dong N, Newton RJ (1989) Somatic embryogenesis in slash pine (Pinus elliottii) from immature embryos cultured in vitro. Plant Sci 65:233–241Google Scholar
  114. 114.
    Newton RJ, Marek-Swize KE, Magallanes-Cedeno ME, Dong N, Sen S, Jain SM (1995) Somatic embryogenesis in slash pine (Pinus elliottii Engelm.). In: Jain S, Gupta P, Newton R (eds) Somatic embryogenesis of woody plants, vol 3. Kluwer Academic Publishers, Dordrecht, pp 183–195Google Scholar
  115. 115.
    Newton RJ, Tang W, Jain SM (2005) Slash pine (Pinus elliottii Engelm.). In: Jain S, Gupta P (eds) Protocol for somatic embryogenesis in woody plants. Springer, Dordrecht, pp 1–10Google Scholar
  116. 116.
    Stojicic D, Uzelac B, Janosevic D, Culafic L, Budimir S (2007) Induction of somatic embryogenesis in Pinus heldreichii culture. Arch Biol Sci Belgrade 59:199–202Google Scholar
  117. 117.
    Choudhury H, Kumaria S, Tamon P (2008) Induction and maturation of somatic embryos from intact megagametophyte explants in Khasi pine (Pinus kesiya Royle ex. Gord.). Curr Sci 95:1433–1438Google Scholar
  118. 118.
    Gupta PK (1995) Somatic embryogenesis in sugar pine (Pinus lambertiana). In: Jain S, Gupta P, Newton R (eds) Somatic embryogenesis in woody plants, vol 3. Kluwer Academic Publishers, Dordrecht, pp 197–205Google Scholar
  119. 119.
    Salajova T, Salaj J (1992) Somatic embryogenesis in European black pine (Pinus nigra Arn.). Biol Plant 34:213–218Google Scholar
  120. 120.
    Salaj T, Moravcikova J, Salaj J (2006) Somatic embryogenesis in Pinus nigra Arn: some physiological, structural and molecular aspects. In: Mujib A, Samaj J (eds) Plant cell monograph, vol 2. Springer, Berlin, pp 141–156Google Scholar
  121. 121.
    Jones NB, van Staden J, Bayley AD (1993) Somatic embryogenesis in Pinus patula. J Plant Physiol 142:366–372Google Scholar
  122. 122.
    Ford CS, Jones NB, van Staden J (2000) Cryopreservation and plant regeneration from somatic embryos of Pinus patula. Plant Cell Rep 19:610–615Google Scholar
  123. 123.
    Ford CS, Fisher LJ, Jones NB, Nigro SA, Makunga NP, van Staden J (2005) Somatic embryogenesis in Pinus patula. In: Jain S, Gupta P (eds) Protocol for somatic embryogenesis in woody plants. Springer, Dordrecht, pp 121–139Google Scholar
  124. 124.
    Smith DR, Singh AP, Wilton L (1985) Zygotic embryos of Pinus radiata in vivo and in vitro, in Proceedings of the international workshop on conifer tissue culture. In: Abstracts of the 3rd meeting International conifer tissue culture work group, Rotorua, pp 12–16Google Scholar
  125. 125.
    Aquea F, Poupin MJ, Matus JT, Gebauer M, Medina C, Arce-Johnson P (2008) Synthetic seed production from somatic embryos of Pinus radiata. Biotechnol Lett 30:1847–1852PubMedGoogle Scholar
  126. 126.
    Hargreaves C, Smith DR (1992) Cryopreservation of Pinus radiata embryogenic tissue. Int Plant Propag Soc Combin Proc 42:327–333Google Scholar
  127. 127.
    Hargreaves CL, Grace LJ, Holden DG (2002) Nurse culture for efficient recovery of cryopreserved Pinus radiata D. Don embryogenic cell lines. Plant Cell Rep 21:40–45Google Scholar
  128. 128.
    Kim YW, Moon HK (2007) Regeneration of plant by somatic embryogenesis in Pinus rigida x P. taeda. In Vitro Cell Dev Biol Plant 43:335–342Google Scholar
  129. 129.
    Arya S, Kalia RK, Arya ID (2000) Induction of somatic embryogenesis in Pinus roxburghii Sarg. Plant Cell Rep 19:775–780Google Scholar
  130. 130.
    Mathur G, Alkutkar VA, Nadgauda RS (2003) Cryopreservation of embryogenic culture of Pinus roxburghii. Biol Plant 46:205–210Google Scholar
  131. 131.
    Becwar MR, Wann SR, Johnson MA, Verhagen SA, Feirer RP, Nagmani R (1988) Development and characterization of in vitro embryogenic systems in conifers. In: Ahuja MR (ed) Somatic cell genetics of woody plant. Kluwer Academic Publishers, Dordrecht, pp 1–18Google Scholar
  132. 132.
    Garin E, Bernier-Cardou M, Isabel N, Klimaszewska K, Plourde A (2000) Effect of sugars, amino acids, and culture technique on maturation of somatic embryos of Pinus strobus on medium with two gellan gum concentrations. Plant Cell Tissue Organ Cult 62:27–37Google Scholar
  133. 133.
    Haggman H, Ryynanen LA, Aronen TS, Krajnakova J (1998) Cryopreservation of embryogenic cultures of Scots pine. Plant Cell Tissue Organ Cult 54:45–53Google Scholar
  134. 134.
    Niemi K, Sarjala T, Chen X, Haggman H (2007) Spermidine and the ectomycorrhizal fungus Psolithus tinctorius synergistically induce maturation of Scots pine embryogenic cultures. J Plant Physiol 164:629–635PubMedGoogle Scholar
  135. 135.
    Becwar M, Clark J, Chowdhury K, Leshaun L, Nehra N, Victor J (2008) A liquid-based method for producing plant somatic embryos from proliferative cells of conifers. PCT International Application, WO 2008030423 A2 20080313 CAN 148:302902 AN, 13 March 2008Google Scholar
  136. 136.
    Becwar MR, Krueger SA (2004) Recovering cryopreserved conifer embryogenic cultures. US Patent 6,682,931, 27 Jan 2004Google Scholar
  137. 137.
    Maruyama E, Hosoi Y, Ishii K (2005) Somatic embryo production and plant regeneration of Japanese black pine (Pinus thunbergii). J For Res 10:403–407Google Scholar
  138. 138.
    Becwar M, Chesick E, Handley L III, Rutter M (1995) Method for regeneration of coniferous plants by somatic embryogenesis. US Patent 5,413,930, 9 May 1995Google Scholar
  139. 139.
    Pullman GS, Buchanan M (2003) Loblolly pine (Pinus taeda L). Stage-specific elemental analyses of zygotic embryo and female gametophyte tissue. Plant Sci 164:943–954Google Scholar

Copyright information

© Humana Press 2011

Authors and Affiliations

  1. 1.School of Biology and Institute of Paper Science and TechnologyGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Institute of Paper Science and TechnologyGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations