Advertisement

Phenotyping Cardiac Gene Therapy in Mice

  • Brian Bostick
  • Yongping Yue
  • Dongsheng Duan
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 709)

Abstract

Heart disease is the leading health problem of industrialized countries. The development of gene therapies tailored towards the heart has grown exponentially over the past decade. Murine models of heart diseases have played a pivotal role in testing novel cardiac gene therapy approaches. Unfortunately, the small body size and rapid heart rate of mice present a great challenge to heart function evaluation. Here we outline the commonly used cardiac phenotyping methods of treadmill exercise regimen, full 12-lead electrocardiographic assay and left ventricular catheterization hemodynamic assay. Application of these protocols will allow critical testing of gene therapy efficacy in mouse models of heart diseases.

Key words

Heart Electrocardiography Treadmill Left ventricular catheterization Heart disease Cardiomyopathy PV loop Cardiac hemodynamics 

Notes

Acknowledgments

This work is supported by grants from the National Institutes of Health HL-91883 and the Muscular Dystrophy Association (DD). We thank Mr. Nate Marschalk and Dr. Dejia Li for helpful discussion on treadmill function assay.

References

  1. 1.
    McNally, E.M., and MacLeod, H. (2005) Therapy Insight: cardiovascular complications associated with muscular dystrophies. Nat Clin Pract Cardiovasc Med 2, 301–308.PubMedCrossRefGoogle Scholar
  2. 2.
    Yue, Y., Li, Z., Harper, S.Q., Davisson, R.L., Chamberlain, J.S., and Duan, D. (2003) Microdystrophin gene therapy of cardiomyopathy restores dystrophin-glycoprotein complex and improves sarcolemma integrity in the Mdx mouse heart. Circulation 108, 1626–1632.PubMedCrossRefGoogle Scholar
  3. 3.
    Li, J., Wang, D., Qian, S., Chen, Z., Zhu, T., and Xiao, X. (2003) Efficient and long-term intracardiac gene transfer in [delta]-sarcoglycan-deficiency hamster by adeno-associated virus-2 vectors. Gene Ther 10, 1807–1813.PubMedCrossRefGoogle Scholar
  4. 4.
    Duan, D. (2006) Challenges and opportunities in dystrophin-deficient cardiomyopathy gene therapy. Hum Mol Genet 15, R253–R261.PubMedCrossRefGoogle Scholar
  5. 5.
    Allamand, V., and Campbell, K.P. (2000) Animal models for muscular dystrophy: valuable tools for the development of therapies. Hum Mol Genet 9, 2459–2467.PubMedCrossRefGoogle Scholar
  6. 6.
    Kass, D.A., Hare, J.M., and Georgakopoulos, D. (1998) Murine cardiac function : a cautionary tail. Circ Res 82, 519–522.PubMedGoogle Scholar
  7. 7.
    Janssen, B.J.A., De Celle, T., Debets, J.J.M., Brouns, A.E., Callahan, M.F., and Smith, T.L. (2004) Effects of anesthetics on systemic hemodynamics in mice. Am J Physiol Heart Circ Physiol 287, H1618–H1624.PubMedCrossRefGoogle Scholar
  8. 8.
    Butz, G.M., and Davisson, R.L. (2001) Long-term telemetric measurement of cardiovascular parameters in awake mice: a physiological genomics tool. Physiol Genomics 5, 89–97.PubMedGoogle Scholar
  9. 9.
    Carlson, S.H., and Wyss, J.M. (2000) Long-term telemetric recording of arterial pressure and heart rate in mice fed basal and high NaCl diets. Hypertension 35, E1–E5.PubMedGoogle Scholar
  10. 10.
    Segers, P., Georgakopoulos, D., Afanasyeva, M., Champion, H.C., Judge, D.P., Millar, H.D., et al. (2005) Conductance catheter-based assessment of arterial input impedance, arterial function, and ventricular-vascular interaction in mice. Am J Physiol Heart Circ Physiol 288, H1157–H1164.PubMedCrossRefGoogle Scholar
  11. 11.
    Lin, M., Liu, R., Gozal, D., Wead, W.B., Chapleau, M.W., Wurster, R., et al. (2007) Chronic intermittent hypoxia impairs baroreflex control of heart rate but enhances heart rate responses to vagal efferent stimulation in anesthetized mice. Am J Physiol Heart Circ Physiol 293, H997–H1006.PubMedCrossRefGoogle Scholar
  12. 12.
    Pacher, P., Liaudet, L., Bai, P., Mabley, J.G., Kaminski, P.M., Virag, L., et al. (2003) Potent metalloporphyrin peroxynitrite decomposition catalyst protects against the development of doxorubicin-induced cardiac dysfunction. Circulation 107, 896–904.PubMedCrossRefGoogle Scholar
  13. 13.
    Pacher, P., Batkai, S., and Kunos, G. (2004) Haemodynamic profile and responsiveness to anandamide of TRPV1 receptor knock-out mice. J Physiol 558, 647–657.PubMedCrossRefGoogle Scholar
  14. 14.
    Shioura, K.M., Geenen, D.L., and Goldspink, P.H. (2008) Sex-related changes in cardiac function following myocardial infarction in mice. Am J Physiol Regul Integr Comp Physiol 295, R528–534.PubMedGoogle Scholar
  15. 15.
    Zuurbier, C.J., Emons, V.M., and Ince, C. (2002) Hemodynamics of anesthetized ventilated mouse models: aspects of anesthetics, fluid support, and strain. Am J Physiol Heart Circ Physiol 282, H2099–H2105.PubMedGoogle Scholar
  16. 16.
    Bostick, B., Yue, Y., Long, C., Marschalk, N., Fine, D.M., Chen, J., et al. (2009) Cardiac expression of a mini-dystrophin that normalizes skeletal muscle force only partially restores heart function in aged Mdx mice. Mol Ther 17, 253–261.PubMedCrossRefGoogle Scholar
  17. 17.
    Pacher, P., Nagayama, T., Mukhopadhyay, P., Batkai, S., and Kass, D.A. (2008) Measurement of cardiac function using pressure-volume conductance catheter technique in mice and rats. Nat Protocols 3, 1422–1434.CrossRefGoogle Scholar
  18. 18.
    Hoit, B.D. (2004) Murine physiology: measuring the phenotype. J Mol Cell Cardiol 37, 377–387.PubMedCrossRefGoogle Scholar
  19. 19.
    Fewell, J.G., Osinska, H., Klevitsky, R., Ng, W., Sfyris, G., Bahrehmand, F., et al. (1997) A treadmill exercise regimen for identifying cardiovascular phenotypes in transgenic mice. Am J Physiol Heart Circ Physiol 273, H1595–H1605.Google Scholar
  20. 20.
    Lerman, I., Harrison, B.C., Freeman, K., Hewett, T.E., Allen, D.L., Robbins, J., et al. (2002) Genetic variability in forced and voluntary endurance exercise performance in seven inbred mouse strains. J Appl Physiol 92, 2245–2255.PubMedGoogle Scholar
  21. 21.
    Branco, D., Wolf, C., Sherwood, M., Hammer, P., Kang, P., and Berul, C. (2007) Cardiac electrophysiological characteristics of the mdx 5cv mouse model of Duchenne muscular dystrophy. J Interv Card Electr 20, 1–7.CrossRefGoogle Scholar
  22. 22.
    Schwarte, L.A., Zuurbier, C.J., and Ince, C. (2000) Mechanical ventilation of mice. Basic Res Cardiol 95, 510–520.PubMedCrossRefGoogle Scholar
  23. 23.
    Bostick, B., Yue, Y., Long, C., and Duan, D. (2008) Prevention of dystrophin-deficient cardiomyopathy in twenty-one-month-old carrier mice by mosaic dystrophin expression or complementary dystrophin/utrophin expression. Circ Res 102, 121–130.PubMedCrossRefGoogle Scholar
  24. 24.
    Georgakopoulos, D., Mitzner, W.A., Chen, C.-H., Byrne, B.J., Millar, H.D., Hare, J.M., et al. (1998) In vivo murine left ventricular pressure-volume relations by miniaturized conductance micromanometry. Am J Physiol Heart Circ Physiol 274, H1416–1422.Google Scholar
  25. 25.
    Hoit, B.D., Ball, N., and Walsh, R.A. (1997) Invasive hemodynamics and force-frequency relationships in open- versus closed-chest mice. Am J Physiol Heart Circ Physiol 273, H2528–H2533.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Molecular Microbiology and Immunology, School of MedicineThe University of MissouriColumbiaUSA
  2. 2.Department of Molecular Microbiology and Immunology, School of MedicineThe University of MissouriColumbiaUSA
  3. 3.Department of Molecular Microbiology and Immunology, School of MedicineThe University of MissouriColumbiaUSA

Personalised recommendations