Muscle Gene Therapy pp 265-275

Part of the Methods in Molecular Biology book series (MIMB, volume 709)

Local Gene Delivery and Methods to Control Immune Responses in Muscles of Normal and Dystrophic Dogs

  • Zejing Wang
  • Stephen J. Tapscott
  • Rainer Storb
Protocol

Abstract

Adeno-associated viral vector (AAV)-mediated gene transfer represents a promising gene replacement strategy for treating Duchenne muscular dystrophy (DMD). However, recent studies demonstrated cellular immunity specific to AAV capsid proteins in animal models, which resulted in liver toxicity and elimination of transgene expression in a human trial of hemophilia B. We have recently developed immunosuppressive strategies to prevent such immunity for successful long-term transgene expression in dog muscle. Here, we describe in detail the immunosuppressive regimens employed in both normal and DMD dogs and provide methods for evaluating the efficiency of the regimens following intramuscular injection of AAV in dogs.

Key words

Adeno-associated virus AAV Duchenne muscular dystrophy DMD Cellular immunity Muscle Dog cxmd Immunosuppression CSP MMF ATG 

References

  1. 1.
    Finsterer J, Stollberger C (2003) The heart in human dystrophinopathies Cardiol 99, 1–19.CrossRefGoogle Scholar
  2. 2.
    Muntoni F, Torelli S, Ferlini A (2003) Dystrophin and mutations: one gene, several proteins, multiple phenotypes (Review). Lancet Neurol 2, 731–740.PubMedCrossRefGoogle Scholar
  3. 3.
    Tyler KL (2003) Origins and early descriptions of “Duchenne muscular dystrophy”. Muscle Nerve 28, 402–422.PubMedCrossRefGoogle Scholar
  4. 4.
    Foidart M, Foidart JM, Engel WK (1981) Collagen localization in normal and fibrotic human skeletal muscle. Arch Neurol 38, 152–157.PubMedGoogle Scholar
  5. 5.
    Duan D (2006) Challenges and opportunities in dystrophin-deficient cardiomyopathy gene therapy. Hum Mol Genet 15 (Spec. No. 2), R253–R261.PubMedCrossRefGoogle Scholar
  6. 6.
    Gregorevic P, Allen JM, Minami E, Blankinship MJ, Haraguchi M, Meuse L, et al. (2006) rAAV6-microdystrophin preserves muscle function and extends lifespan in severely dystrophic mice. Nat Med 12, 787–789.PubMedCrossRefGoogle Scholar
  7. 7.
    Wang Z, Chamberlain JS, Tapscott SJ, Storb R (2009) Gene therapy in large animal models of muscular dystrophy. ILAR J 50, 187–198.PubMedGoogle Scholar
  8. 8.
    Athanasopoulos T, Fabb S, Dickson G (2000) Gene therapy vectors based on adeno-associated virus: characteristics and applications to acquired and inherited diseases. Int J Mol Med 6, 363-375.PubMedGoogle Scholar
  9. 9.
    Sun B, Zhang H, Franco LM, Young SP, Schneider A, Bird A, et al. (2005) Efficacy of an adeno-associated virus 8-pseudotyped vector in glycogen storage disease type II. Mol Ther 11, 57–65.PubMedCrossRefGoogle Scholar
  10. 10.
    Yue Y, Ghosh A, Long C, Bostick B, Smith BF, Kornegay JN, et al. (2008) A single intravenous injection of adeno-associated virus serotype-9 leads to whole body skeletal muscle transduction in dogs. Mol Ther 16, 1944–1952.PubMedCrossRefGoogle Scholar
  11. 11.
    Athanasopoulos T, Graham IR, Foster H, Dickson G (2004) Recombinant adeno-associated viral (rAAV) vectors as therapeutic tools for Duchenne muscular dystrophy (DMD). Gene Ther 11 Suppl 1, S109–S121.PubMedCrossRefGoogle Scholar
  12. 12.
    Warrington KH, Jr., Herzog RW (2006) Treatment of human disease by adeno-associated viral gene transfer. Hum Genet 119, 571–603.PubMedCrossRefGoogle Scholar
  13. 13.
    Wang Z, Allen JM, Riddell SR, Gregorevic P, Storb R, Tapscott SJ, et al. (2007) Immunity to adeno-associated virus-mediated gene transfer in a random-bred canine model of Duchenne muscular dystrophy. Hum Gene Ther 18, 18–26.PubMedCrossRefGoogle Scholar
  14. 14.
    Sabatino DE, Mingozzi F, Hui DJ, Chen H, Colosi P, Ertl HC, et al. (2005) Identification of mouse AAV capsid-specific CD8+ T cell epitopes. Mol Ther 12, 1023–1033.PubMedCrossRefGoogle Scholar
  15. 15.
    Gao G, Lu Y, Calcedo R, Grant RL, Bell P, Wang L, et al. (2006) Biology of AAV serotype vectors in liver-directed gene transfer to nonhuman primates. Mol Ther 13, 77–87.PubMedCrossRefGoogle Scholar
  16. 16.
    Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ, et al. (2006) Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response (erratum appears in Nat Med 12, 592). Nat Med 12, 342-347.PubMedCrossRefGoogle Scholar
  17. 17.
    Maris M, Storb R (2003) The transplantation of hematopoietic stem cells after non-myeloablative conditioning: A cellular therapeutic approach to hematologic and genetic diseases. Immunol Res 28, 13-24.PubMedCrossRefGoogle Scholar
  18. 18.
    Kirk AD (2003) Crossing the bridge: large animal models in translational transplantation research. Immunol Rev 196, 176–196.PubMedCrossRefGoogle Scholar
  19. 19.
    Storb R, Yu C, Wagner JL, Deeg HJ, Nash RA, Kiem H-P, et al. (1997) Stable mixed hematopoietic chimerism in DLA-identical littermate dogs given sublethal total body irradiation before and pharmacological immunosuppression after marrow transplantation. Blood 89, 3048–3054.PubMedGoogle Scholar
  20. 20.
    Yu C, Seidel K, Nash RA, Deeg HJ, Sandmaier BM, Barsoukov A, et al. (1998) Synergism between mycophenolate mofetil and cyclosporine in preventing graft-versus-host disease among lethally irradiated dogs given DLA-nonidentical unrelated marrow grafts. Blood 91, 2581–2587.PubMedGoogle Scholar
  21. 21.
    McSweeney PA, Niederwieser D, Shizuru JA, Sandmaier BM, Molina AJ, Maloney DG, et al. (2001) Hematopoietic cell transplantation in older patients with hematologic malignancies: replacing high-dose cytotoxic therapy with graft-versus-tumor effects. Blood 97, 3390–3400.PubMedCrossRefGoogle Scholar
  22. 22.
    Maris MB, Niederwieser D, Sandmaier BM, Storer B, Stuart M, Maloney D, et al. (2003) HLA-matched unrelated donor hematopoietic cell transplantation after nonmyeloablative conditioning for patients with hematologic malignancies. Blood 102, 2021–2030.PubMedCrossRefGoogle Scholar
  23. 23.
    Storb R, Floersheim GL, Weiden PL, Graham TC, Kolb H-J, Lerner KG, et al. (1974) Effect of prior blood transfusions on marrow grafts: Abrogation of sensitization by procarbazine and antithymocyte serum. J Immunol 112, 1508–1516.PubMedGoogle Scholar
  24. 24.
    Buckley JD, Chard RL, Baehner RL, Nesbit ME, Lampkin BC, Woods WG, et al. (1989) Improvement in outcome for children with acute nonlymphocytic leukemia. A report from the Childrens Cancer Study Group. Cancer 63, 1457–1465.PubMedCrossRefGoogle Scholar
  25. 25.
    Storb R, Kolb HJ, Graham TC, Kolb H, Weiden PL, Thomas ED (1973) Treatment of established graft-versus-host disease in dogs by antithymocyte serum or prednisone. Blood 42, 601–609.PubMedGoogle Scholar
  26. 26.
    Storb R, Gluckman E, Thomas ED, Buckner CD, Clift RA, Fefer A, et al. (1974) Treatment of established human graft-versus-host disease by antithymocyte globulin. Blood 44, 57–75.Google Scholar
  27. 27.
    Doney K, Leisenring W, Storb R, Appelbaum FR, for the Seattle Bone Marrow Transplant Team (1997) Primary treatment of acquired aplastic anemia: outcomes with bone marrow transplantation and immunosuppressive therapy. Ann Intern Med 126, 107–115.PubMedGoogle Scholar
  28. 28.
    Wang Z, Kuhr CS, Allen JM, Blankinship M, Gregorevic P, Chamberlain JS, et al. (2007) Sustained AAV-mediated dystrophin expression in a canine model of Duchenne muscular dystrophy with a brief course of immunosuppression. Mol Ther 15, 1160–1166.PubMedGoogle Scholar
  29. 29.
    Phelps SF, Hauser MA, Cole NM, Rafael JA, Hinkle RT, Faulkner JA, et al. (1995) Expression of full-length and truncated dystrophin mini-genes in transgenic mdx mice. Hum Mol Genet 4, 1251–1258.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Zejing Wang
    • 1
  • Stephen J. Tapscott
    • 2
    • 3
  • Rainer Storb
    • 1
  1. 1.Program in Transplantation Biology, Division of Clinical ResearchFred Hutchinson Cancer Research CenterSeattleUSA
  2. 2.Division of Human BiologyFred Hutchinson Cancer Research CenterSeattleUSA
  3. 3.Department of NeurologyUniversity of WashingtonSeattleUSA

Personalised recommendations