Site-Specific Protein Labeling by Intein-Mediated Protein Ligation

  • Inca Ghosh
  • Nancy Considine
  • Elissa Maunus
  • Luo Sun
  • Aihua Zhang
  • John Buswell
  • Thomas C. EvansJr
  • Ming-Qun Xu
Part of the Methods in Molecular Biology book series (MIMB, volume 705)


Intein-mediated protein ligation (IPL) employs an intein to create a protein possessing a C-terminal thioester that can be ligated to a protein or peptide with an amino-terminal cysteine via a native peptide bond. Here we present a procedure to conduct isolation and labeling of recombinant proteins expressed in E. coli using synthetic short peptides possessing a fluorescent moiety. This approach can be readily utilized for site-specific conjugation of a fluorophore to the C-terminus of a protein of interest, without the drawback of non-specific chemical labeling. This chapter also gives a general review of the critical parameters of intein-mediated cleavage and ligation reactions.

Key words

Intein-mediated protein ligation expressed protein ligation intein protein labeling 



The authors wish to thank New England Biolabs and Donald. G. Comb, Jim Ellard, Richard Roberts, and Christopher Noren for their support and suggestions. We thank the Organic Division for peptide synthesis.


  1. 1.
    Rai, M., Padh, H. (2001) Expression systems for production of heterologous proteins. Curr Sci 80, 1121–1128.Google Scholar
  2. 2.
    Xu, M. Q., Evans, T. C., Jr. (2003) Purification of recombinant proteins from E. coli by engineered inteins. Methods Mol Biol 205, 43–68.PubMedGoogle Scholar
  3. 3.
    Chong, S., Mersha, F. B., Comb, D. G., Scott, M. E., Landry, D., Vence, L. M., Perler, F. B., Benner, J., Kucera, R. B., Hirvonen, C. A., Pelletier, J. J., Paulus, H., Xu, M. Q. (1997) Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene 192, 271–281.PubMedCrossRefGoogle Scholar
  4. 4.
    Evans, T. C., Jr., Benner, J., Xu, M. Q. (1998) Semisynthesis of cytotoxic proteins using a modified protein splicing element. Protein Sci 7, 2256–2264.PubMedCrossRefGoogle Scholar
  5. 5.
    Muir, T. W., Sondhi, D., Cole, P. A. (1998) Expressed protein ligation: a general method for protein engineering. Proc Natl Acad Sci USA 95, 6705–6710.PubMedCrossRefGoogle Scholar
  6. 6.
    Xu, M. Q., Evans, T. C., Jr. (2005) Recent advances in protein splicing: manipulating proteins in vitro and in vivo. Curr Opin Biotechnol 16, 440–446.PubMedCrossRefGoogle Scholar
  7. 7.
    Southworth, M. W., Amaya, K., Evans, T. C., Xu, M. Q., Perler, F. B. (1999) Purification of proteins fused to either the amino or carboxy terminus of the Mycobacterium xenopi gyrase A intein. Biotechniques 27, 110–114, 116, 118–120.PubMedGoogle Scholar
  8. 8.
    Hackeng, T. M., Griffin, J. H., Dawson, P. E. (1999) Protein synthesis by native chemical ligation: expanded scope by using straightforward methodology. Proc Natl Acad Sci USA 96, 10068–10073.PubMedCrossRefGoogle Scholar
  9. 9.
    Sun, L., Rush, J., Ghosh, I., Maunus, J. R., Xu, M. Q. (2004) Producing peptide arrays for epitope mapping by intein-mediated protein ligation. Biotechniques 37, 430–436.PubMedGoogle Scholar
  10. 10.
    Kochinyan, S., Sun, L., Ghosh, I., Barshevsky, T., Xu, J., Xu, M. Q. (2007) Use of intein-mediated phosphoprotein arrays to study substrate specificity of protein phosphatases. Biotechniques 42, 63–69.PubMedCrossRefGoogle Scholar
  11. 11.
    Burbulis, I., Yamaguchi, K., Gordon, A., Carlson, R., Brent, R. (2005) Using protein-DNA chimeras to detect and count small numbers of molecules. Nat Methods 2, 31–37.PubMedCrossRefGoogle Scholar
  12. 12.
    Camarero, J. A., Muir, T. W. (1999) Biosynthesis of a head-to-tail cyclized protein with improved biological activity. JACS 121, 5597–5598.CrossRefGoogle Scholar
  13. 13.
    Ghosh, I., Sun, L., Evans, T. C., Jr., Xu, M. Q. (2004) An improved method for utilization of peptide substrates for antibody characterization and enzymatic assays. J Immunol Methods 293, 85–95.PubMedCrossRefGoogle Scholar
  14. 14.
    Girish, A., Sun, H., Yeo, D. S., Chen, G. Y., Chua, T. K., Yao, S. Q. (2005) Site-specific immobilization of proteins in a microarray using intein-mediated protein splicing. Bioorg Med Chem Lett 15, 2447–2451.PubMedCrossRefGoogle Scholar
  15. 15.
    Rak, A., Pylypenko, O., Niculae, A., Pyatkov, K., Goody, R. S., Alexandrov, K. (2004) Structure of the Rab7:REP-1 complex: insights into the mechanism of Rab prenylation and choroideremia disease. Cell 117, 749–760.PubMedCrossRefGoogle Scholar
  16. 16.
    Seyedsayamdost, M. R., Yee, C. S., Stubbe, J. (2007) Site-specific incorporation of fluorotyrosines into the R2 subunit of E. coli ribonucleotide reductase by expressed protein ligation. Nat Protocol 2, 1225–1235.CrossRefGoogle Scholar
  17. 17.
    Skrisovska, L., Allain, F. H. (2008) Improved segmental isotope labeling methods for the NMR study of multidomain or large proteins: application to the RRMs of Npl3p and hnRNP L. J Mol Biol 375, 151–164.PubMedCrossRefGoogle Scholar
  18. 18.
    Sun, L., Ghosh, I., Barshevsky, T., Kochinyan, S., Xu, M. Q. (2007) Design, preparation and use of ligated phosphoproteins: a novel approach to study protein phosphatases by dot blot array, ELISA and Western blot assays. Methods 42, 220–226.PubMedCrossRefGoogle Scholar
  19. 19.
    Sun, L., Ghosh, I., Xu, M. Q. (2003) Generation of an affinity column for antibody purification by intein-mediated protein ligation. J Immunol Methods 282, 45–52.PubMedCrossRefGoogle Scholar
  20. 20.
    Beekman, N. J. C. M., Schaaper, W. M. M., Tesser, G. I., Dalsgaard, K., Kamstrup, S., Langeveld, J. P. M., Boshuizen, R. S., Meloen, R.H. (1997) Synthetic peptide vaccines: palmitoylation of peptide antigens by a thioester bond increases immunogenicity. J Peptide Res 50, 357–364.CrossRefGoogle Scholar
  21. 21.
    Ruegg, U. T., Gattner, H. G. (1975) Reduction of S-sulpho groups by tributylphosphine: an improved method for the recombination of insulin chains. Hoppe Seylers Z Physiol Chem 356, 1527–1533.PubMedCrossRefGoogle Scholar
  22. 22.
    Xu, J., Sun, L., Ghosh, I., Xu, M. Q. (2004) Western blot analysis of Src kinase assays using peptide substrates ligated to a carrier protein. Biotechniques 36, 976–978, 980–981.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Inca Ghosh
    • 1
  • Nancy Considine
    • 1
  • Elissa Maunus
    • 1
  • Luo Sun
    • 1
  • Aihua Zhang
    • 1
  • John Buswell
    • 1
  • Thomas C. EvansJr
    • 2
  • Ming-Qun Xu
    • 3
  1. 1.New England BioLabsIpswichUSA
  2. 2.DNA Enzymes DivisionNew England BioLabsIpswichUSA
  3. 3.Chemical Biology DivisionNew England BioLabsIpswichUSA

Personalised recommendations