Advertisement

Nitric Oxide pp 197-223 | Cite as

NOS Antagonism Using Viral Vectors as an Experimental Strategy: Implications for In Vivo Studies of Cardiovascular Control and Peripheral Neuropathies

  • Beihui Liu
  • James Hewinson
  • Haibo Xu
  • Francisco Montero
  • Carmen R. Sunico
  • Federico Portillo
  • Julian F.R. Paton
  • Bernardo Moreno-López
  • Sergey Kasparov
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 704)

Abstract

Nitric oxide, a free gaseous signalling molecule, has attracted the attention of numerous biologists and has been implicated in the regulation of the cardiovascular, nervous and immune system. However, the cellular mechanisms mediating nitric oxide modulation remain unclear. Upregulation by gene over-expression or down-regulation by gene inactivation of nitric oxide synthase has generated quantitative changes in abundance thereby permitting functional insights. We have tested and proved that genetic nitric oxide synthase antagonism using viral vectors, particularly with dominant negative mutants and microRNA 30-based short hairpin RNA , is an efficient and effective experimental approach to manipulate nitric oxide synthase expression both in vitro and in vivo.

Key words

Nitric oxide (NO) nitric oxide synthase (NOS) viral vectors dominant negative mutants RNA interference cardiovascular control nucleus tractus solitarii (NTS) peripheral neuropathy 

References

  1. 1.
    Kasparov, S., Teschemacher, A. G., Hwang, D. Y., Kim, K. S., Lonergan, T., Paton, J. F. (2004) Viral vectors as tools for studies of central cardiovascular control. Prog Biophys Mol Biol 84, 251–277.PubMedCrossRefGoogle Scholar
  2. 2.
    Aagaard, L., Rossi, J. J. (2007) RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev 59, 75–86.PubMedCrossRefGoogle Scholar
  3. 3.
    Thomas, C. E., Ehrhardt, A., Kay, M. A. (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4, 346–358.PubMedCrossRefGoogle Scholar
  4. 4.
    Papale, A., Cerovic, M., Brambilla, R. (2009) Viral vector approaches to modify gene expression in the brain. J Neurosci Methods 15, 1–14.CrossRefGoogle Scholar
  5. 5.
    Snove, O., Jr., Rossi, J. J. (2006) Expressing short hairpin RNAs in vivo. Nat Methods 3, 689–695.PubMedCrossRefGoogle Scholar
  6. 6.
    Paddison, P. J. (2008) RNA interference in mammalian cell systems. Curr Top Microbiol Immunol 320, 1–19.PubMedCrossRefGoogle Scholar
  7. 7.
    Michel, T., Feron, O. (1997) Nitric oxide synthases: which, where, how, and why? J Clin Invest 100, 2146–2152.PubMedCrossRefGoogle Scholar
  8. 8.
    Kantor, D. B., Lanzrein, M., Stary, S. J., Sandoval, G. M., Smith, W. B., Sullivan, B. M., et al. (1996) A role for endothelial NO synthase in LTP revealed by adenovirus-mediated inhibition and rescue. Science 274, 1744–1748.PubMedCrossRefGoogle Scholar
  9. 9.
    Liu, J., Sessa, W. C. (1994) Identification of covalently bound amino-terminal myristic acid in endothelial nitric oxide synthase. J Biol Chem 269, 11691–11694.PubMedGoogle Scholar
  10. 10.
    Busconi, L., Michel, T. (1993) Endothelial nitric oxide synthase. N-terminal myristoylation determines subcellular localization. J Biol Chem 268, 8410–8413.PubMedGoogle Scholar
  11. 11.
    Harding, T. C., Geddes, B. J., Noel, J. D., Murphy, D., Uney, J. B. (1997) Tetracycline-regulated transgene expression in hippocampal neurones following transfection with adenoviral vectors. J Neurochem 69, 2620–2623.PubMedCrossRefGoogle Scholar
  12. 12.
    Harding, T. C., Geddes, B. J., Murphy, D., Knight, D., Uney, J. B. (1998) Switching transgene expression in the brain using an adenoviral tetracycline-regulatable system. Nat Biotechnol 16, 553–555.PubMedCrossRefGoogle Scholar
  13. 13.
    Wang, S., Teschemacher, A. G., Paton, J. F., Kasparov, S. (2006) Mechanism of nitric oxide action on inhibitory GABAergic signaling within the nucleus tractus solitarii. FASEB J 20, 1537–1539.PubMedCrossRefGoogle Scholar
  14. 14.
    Waki, H., Murphy, D., Yao, S. T., Kasparov, S., Paton, J. F. (2006) Endothelial NO synthase activity in nucleus tractus solitarii contributes to hypertension in spontaneously hypertensive rats. Hypertension 48, 644–650.PubMedCrossRefGoogle Scholar
  15. 15.
    Waki, H., Kasparov, S., Wong, L. F., Murphy, D., Shimizu, T., Paton, J. F. (2003) Chronic inhibition of endothelial nitric oxide synthase activity in nucleus tractus solitarii enhances baroreceptor reflex in conscious rats. J Physiol 546, 233–242.PubMedCrossRefGoogle Scholar
  16. 16.
    Paton, J. F., Waki, H., Abdala, A. P., Dickinson, J.,, Kasparov, S. (2007) Vascular-brain signaling in hypertension: role of angiotensin II and nitric oxide. Curr Hypertens Rep 9, 242–247.PubMedCrossRefGoogle Scholar
  17. 17.
    Bridge, P. M., Ball, D. J., Mackinnon, S. E., Nakao, Y., Brandt, K., Hunter, D. A., et al. (1994) Nerve crush injuries – a model for axonotmesis. Exp Neurol 127, 284–290.PubMedCrossRefGoogle Scholar
  18. 18.
    Verdu, E., Ceballos, D., Vilches, J. J., Navarro, X. (2000) Influence of aging on peripheral nerve function and regeneration. J Peripher Nerv Syst 5, 191–208.PubMedCrossRefGoogle Scholar
  19. 19.
    Gonzalez-Hernandez, T., Rustioni, A. (1999) Expression of three forms of nitric oxide synthase in peripheral nerve regeneration. J Neurosci Res 55, 198–207.PubMedCrossRefGoogle Scholar
  20. 20.
    Sunico, C. R., Portillo, F., Gonzalez-Forero, D., Kasparov, S.,, Moreno-Lopez, B. (2008) Evidence for a detrimental role of nitric oxide synthesized by endothelial nitric oxide synthase after peripheral nerve injury. Neuroscience 157, 40–51.PubMedCrossRefGoogle Scholar
  21. 21.
    Stegmeier, F., Hu, G., Rickles, R. J., Hannon, G. J., Elledge, S. J. (2005) A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc Natl Acad Sci USA 102, 13212–13217.PubMedCrossRefGoogle Scholar
  22. 22.
    Liu, B., Paton, J. F., Kasparov, S. (2008) Viral vectors based on bidirectional cell-specific mammalian promoters and transcriptional amplification strategy for use in vitro and in vivo. BMC Biotechnol 8, 49–57.PubMedCrossRefGoogle Scholar
  23. 23.
    Sunico, C. R., Portillo, F., Gonzalez-Forero, D., Moreno-Lopez, B. (2005) Nitric-oxide-directed synaptic remodeling in the adult mammal CNS. J Neurosci 25, 1448–1458.PubMedCrossRefGoogle Scholar
  24. 24.
    Coleman, J. E., Huentelman, M. J., Kasparov, S., Metcalfe, B. L., Paton, J. F., Katovich, M. J., et al. (2003) Efficient large-scale production and concentration of HIV-1-based lentiviral vectors for use in vivo. Physiol Genomics 12, 221–228.PubMedGoogle Scholar
  25. 25.
    Bewig, B., Schmidt, W. E. (2000) Accelerated titering of adenoviruses. Biotechniques 28, 870–873.PubMedGoogle Scholar
  26. 26.
    Lonergan, T., Teschemacher, A. G., Hwang, D. Y., Kim, K. S., Pickering, A. E., Kasparov, S. (2005) Targeting brain stem centers of cardiovascular control using adenoviral vectors: impact of promoters on transgene expression. Physiol Genomics 20, 165–172.PubMedCrossRefGoogle Scholar
  27. 27.
    Gonzalez-Forero, D., Portillo, F., Sunico, C. R., Moreno-Lopez, B. (2004) Nerve injury reduces responses of hypoglossal motoneurones to baseline and chemoreceptor-modulated inspiratory drive in the adult rat. J Physiol 557, 991–1011.PubMedCrossRefGoogle Scholar
  28. 28.
    Xu, H., McCann, M., Zhang, Z., Posner, G. H., Bingham, V., El-Tanani, M., et al. (2009) Vitamin D receptor modulates the neoplastic phenotype through antagonistic growth regulatory signals. Mol Carcinog 48, 758–772.PubMedCrossRefGoogle Scholar
  29. 29.
    Chen, X., Xu, H., Wan, C., McCaigue, M., Li, G. (2006) Bioreactor expansion of human adult bone marrow-derived mesenchymal stem cells. Stem Cells 24, 2052–2059.PubMedCrossRefGoogle Scholar
  30. 30.
    Paxinos, G., Watson, C. (1986) The Rat Brain in Stereotaxic Coordinates. Academic, London.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Beihui Liu
    • 1
  • James Hewinson
    • 1
  • Haibo Xu
    • 2
  • Francisco Montero
    • 3
  • Carmen R. Sunico
    • 3
  • Federico Portillo
    • 3
  • Julian F.R. Paton
    • 1
  • Bernardo Moreno-López
    • 3
  • Sergey Kasparov
    • 1
  1. 1.Department of Physiology and PharmacologyUniversity of BristolBristolUK
  2. 2.Department of PharmacologyState Key Laboratory for Research and Development of Chinese Materia Medica, Chengdu University of Traditional Chinese MedicineChengduP.R. China
  3. 3.Área de Fisiología, Facultad de MedicinaUniversidad de CádizCádizSpain

Personalised recommendations