Cell Sheet Technology for Tissue Engineering: The Self-Assembly Approach Using Adipose-Derived Stromal Cells

  • Benoît Labbé
  • Guillaume Marceau-Fortier
  • Julie Fradette
Part of the Methods in Molecular Biology book series (MIMB, volume 702)


In the past years, adipose tissue has spurred a wide interest, not only as a source of adult multipotent stem cells but also as a highly eligible tissue for reconstructive surgery procedures. Tissue engineering is one field of regenerative medicine progressing at great strides in part due to its important use of adipose-derived stem/stromal cells (ASCs). The development of diversified technologies combining ASCs with various biomaterials has lead to the reconstruction of numerous types of tissue-engineered substitutes such as bone, cartilage, and adipose tissues from rodent, porcine, or human ASCs. We have recently achieved the reconstruction of connective and adipose tissues composed entirely of cultured human ASCs and their secreted endogenous extracellular matrix components by a methodology known as the self-assembly approach of tissue engineering. The latter is based on the stimulation of ASCs to secrete and assemble matrix components in culture, leading to the production of cell sheets that can be manipulated and further assembled into thicker multilayer tissues. In this chapter, protocols to generate both reconstructed connective and adipocyte-containing tissues using the self-assembly approach are described in detail. The methods include amplification and cell banking of human ASCs, as well as culture protocols for the production of individual stromal and adipose sheets, which are the building blocks for the reconstruction of multilayered human connective and adipose tissues, respectively.

Key words

Mesenchymal stem cells Adipose tissue Adipose substitutes Reconstructed tissues Tissue engineering Self-assembly Cell sheet Connective tissue Extracellular matrix 



The authors would like to thank current and former members of the LOEX laboratory. A special thank you to Danielle Larouche and to the members of the LOETA team, who have contributed to develop these protocols.


  1. 1.
    Caplan, A. I. (1991) Mesenchymal stem cells. J Orthop Res 9, 641–50.PubMedCrossRefGoogle Scholar
  2. 2.
    Prockop, D. J. (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276, 71–4.PubMedCrossRefGoogle Scholar
  3. 3.
    Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., and Marshak, D. R. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., Du, J., Aldrich, S., Lisberg, A., Low, W. C., Largaespada, D. A., and Verfaillie, C. M. (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Toma, J. G., McKenzie, I. A., Bagli, D., and Miller, F. D. (2005) Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells 23, 727–37.PubMedCrossRefGoogle Scholar
  6. 6.
    Gingras, M., Champigny, M. F., and Berthod, F. (2007) Differentiation of human adult skin-derived neuronal precursors into mature neurons. J Cell Physiol 210, 498–506.PubMedCrossRefGoogle Scholar
  7. 7.
    Wang, H. S., Hung, S. C., Peng, S. T., Huang, C. C., Wei, H. M., Guo, Y. J., Fu, Y. S., Lai, M. C., and Chen, C. C. (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22, 1330–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Sarugaser, R., Lickorish, D., Baksh, D., Hosseini, M. M., and Davies, J. E. (2005) Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 23, 220–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., Benhaim, P., Lorenz, H. P., and Hedrick, M. H. (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7, 211–28.PubMedCrossRefGoogle Scholar
  10. 10.
    Laplante, A. F., Germain, L., Auger, F. A., and Moulin, V. (2001) Mechanisms of wound reepithelialization: hints from a tissue-engineered reconstructed skin to long-standing questions. FASEB J 15, 2377–89.PubMedCrossRefGoogle Scholar
  11. 11.
    Auger, F. A., Remy-Zolghadri, M., Grenier, G., and Germain, L. (2000) The self-assembly approach for organ reconstruction by tissue engineering. e-Biomed: A J Regen Med 1, 75–86.CrossRefGoogle Scholar
  12. 12.
    Boyce, S. T., Kagan, R. J., Greenhalgh, D. G., Warner, P., Yakuboff, K. P., Palmieri, T., and Warden, G. D. (2006) Cultured skin substitutes reduce requirements for harvesting of skin autograft for closure of excised, full-thickness burns. J Trauma 60, 821–9.PubMedGoogle Scholar
  13. 13.
    Michel, M., L’Heureux, N., Pouliot, R., Xu, W., Auger, F. A., and Germain, L. (1999) Characterization of a new tissue-engineered human skin equivalent with hair. In Vitro Cell Dev Bio 35, 318–26.CrossRefGoogle Scholar
  14. 14.
    Pouliot, R., Larouche, D., Auger, F. A., Juhasz, J., Xu, W., Li, H., and Germain, L. (2002) Reconstructed human skin produced in vitro and grafted on athymic mice. Transplantation 73, 1751–7.PubMedCrossRefGoogle Scholar
  15. 15.
    L’Heureux, N., Pâquet, S., Labbé, R., Germain, L., and Auger, F. A. (1998) A completely biological tissue-engineered blood vessel. FASEB Journal 12, 47–56.PubMedGoogle Scholar
  16. 16.
    Larouche, D., Paquet, C., Fradette, J., Carrier, P., Auger, F. A., and Germain, L. (2009) Regeneration of skin and cornea by tissue engineering. Methods Mol Biol 482, 233–56.PubMedCrossRefGoogle Scholar
  17. 17.
    Carrier, P., Deschambeault, A., Audet, C., Talbot, M., Gauvin, R., Giasson, C. J., Auger, F. A., Guerin, S. L., and Germain, L. (2009) Impact of cell source on human cornea reconstructed by tissue engineering. Invest Ophthalmol Vis Sci 50, 2645–52.PubMedCrossRefGoogle Scholar
  18. 18.
    Magnan, M., Levesque, P., Gauvin, R., Dube, J., Barrieras, D., El-Hakim, A., and Bolduc, S. (2009) Tissue engineering of a genitourinary tubular tissue graft resistant to suturing and high internal pressures. Tissue Eng Part A 15, 197–202.CrossRefGoogle Scholar
  19. 19.
    Vermette, M., Trottier, V., Menard, V., Saint-Pierre, L., Roy, A., and Fradette, J. (2007) Production of a new tissue-engineered adipose substitute from human adipose-derived stromal cells. Biomaterials 28, 2850–60.PubMedCrossRefGoogle Scholar
  20. 20.
    Vallee, M., Cote, J. F., and Fradette, J. (2009) Adipose-tissue engineering: taking advantage of the properties of human adipose-derived stem/stromal cells. Pathol Biol (Paris) 57, 309–17.CrossRefGoogle Scholar
  21. 21.
    Trottier, V., Marceau-Fortier, G., Germain, L., Vincent, C., and Fradette, J. (2008) IFATS collection: Using human adipose-derived stem/stromal cells for the production of new skin substitutes. Stem Cells 26, 2713–23.PubMedCrossRefGoogle Scholar
  22. 22.
    Miyahara, Y., Nagaya, N., Kataoka, M., Yanagawa, B., Tanaka, K., Hao, H., Ishino, K., Ishida, H., Shimizu, T., Kangawa, K., Sano, S., Okano, T., Kitamura, S., and Mori, H. (2006) Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 12, 459–65.PubMedCrossRefGoogle Scholar
  23. 23.
    Mitani, G., Sato, M., Lee, J. I., Kaneshiro, N., Ishihara, M., Ota, N., Kokubo, M., Sakai, H., Kikuchi, T., and Mochida, J. (2009) The properties of bioengineered chondrocyte sheets for cartilage regeneration. BMC Biotechnol 9, 17.PubMedCrossRefGoogle Scholar
  24. 24.
    Shimizu, H., Ohashi, K., Utoh, R., Ise, K., Gotoh, M., Yamato, M., and Okano, T. (2009) Bioengineering of a functional sheet of islet cells for the treatment of diabetes mellitus. Biomaterials 30, 5943–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Yang, J., Yamato, M., Shimizu, T., Sekine, H., Ohashi, K., Kanzaki, M., Ohki, T., Nishida, K., and Okano, T. (2007) Reconstruction of functional tissues with cell sheet engineering. Biomaterials 28, 5033–43.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Benoît Labbé
    • 1
    • 2
  • Guillaume Marceau-Fortier
    • 1
    • 2
  • Julie Fradette
    • 1
    • 2
  1. 1.LOEX (Laboratoire d’Organogénèse Expérimental Organogenesis Laboratory)Centre de Recherche FRSQ du CHA Universitaire de QuébecQuébecCanada
  2. 2.Département de ChirurgieUniversité LavalQuébecCanada

Personalised recommendations