Plant Chromosome Engineering pp 51-65

Part of the Methods in Molecular Biology book series (MIMB, volume 701) | Cite as

Homologous Recombination in Plants: An Antireview


Homologous recombination (HR) is a central cellular process involved in many aspects of genome maintenance such as DNA repair, replication, telomere maintenance, and meiotic chromosomal segregation. HR is highly conserved among eukaryotes, contributing to genome stability as well as to the generation of genetic diversity. It has been intensively studied, for almost a century, in plants and in other organisms. In this antireview, rather than reviewing existing knowledge, we wish to underline the many open questions in plant HR. We will discuss the following issues: how do we define homology and how the degree of homology affects HR? Are there any plant-specific HR qualities, how extensive is functional conservation and did HR proteins acquire new functions? How efficient is HR in plants and what are the cis and the trans factors that regulate it? Finally, we will give the prospects for enhancing the rates of gene targeting and meiotic HR for plant breeding purposes.

Key words

Homologous recombination Meiotic recombination Zinc-finger nuclease Gene ­­targeting Chromatin remodeling Plant breeding 


  1. 1.
    Bleuyard, J. Y., Gallego, M. E., and White, C. I. (2006) Recent advances in understanding of the DNA double-strand break repair machinery of plants. DNA Repair (Amst) 5, 1–12.CrossRefGoogle Scholar
  2. 2.
    Wijnker, E. and de Jong, H. (2008) Managing meiotic recombination in plant breeding. Trends Plant Sci 13, 640–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Schuermann, D., Molinier, J., Fritsch, O., and Hohn, B. (2005) The dual nature of homologous recombination in plants. Trends Genet 21, 172–81.PubMedCrossRefGoogle Scholar
  4. 4.
    Muyt, A. D., Mercier, R., Mezard, C., and Grelon, M. (2009) Meiotic recombination and crossovers in plants. Genome Dyn 5, 14–25.PubMedCrossRefGoogle Scholar
  5. 5.
    Mercier, R. and Grelon, M. (2008) Meiosis in plants: ten years of gene discovery. Cytogenet Genome Res 120, 281–90.PubMedCrossRefGoogle Scholar
  6. 6.
    Mezard, C., Vignard, J., Drouaud, J., and Mercier, R. (2007) The road to crossovers: plants have their say. Trends Genet 23, 91–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Kumar, S., Allen, G. C., and Thompson, W. F. (2006) Gene targeting in plants: fingers on the move. Trends Plant Sci 11, 159–61.PubMedCrossRefGoogle Scholar
  8. 8.
    Li, J., Hsia, A. P., and Schnable, P. S. (2007) Recent advances in plant recombination. Curr Opin Plant Biol 10, 131–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Haber, J. E. (2000) Partners and pathways repairing a double-strand break. Trends Genet 16, 259–64.PubMedCrossRefGoogle Scholar
  10. 10.
    Puchta, H. and Hohn, B. (1991) A transient assay in plant cells reveals a positive correlation between extrachromosomal recombination rates and length of homologous overlap. Nucleic Acids Res 19, 2693–700.PubMedCrossRefGoogle Scholar
  11. 11.
    Gorbunova, V. and Levy, A. A. (1999) How plants make ends meet: DNA double-strand break repair. Trends Plant Sci 4, 263–69.PubMedCrossRefGoogle Scholar
  12. 12.
    Weiner, A., Zauberman, N., and Minsky, A. (2009) Recombinational DNA repair in a cellular context: a search for the homology search. Nat Rev Microbiol 7, 748–55.PubMedCrossRefGoogle Scholar
  13. 13.
    Barzel, A. and Kupiec, M. (2008) Finding a match: how do homologous sequences get together for recombination? Nat Rev Genet 9, 27–37.PubMedCrossRefGoogle Scholar
  14. 14.
    Li, X. and Heyer, W. D. (2008) Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 18, 99–113.PubMedCrossRefGoogle Scholar
  15. 15.
    Walbot, V. (1985) On the life strategies of plants and animals. Trends Genet 1, 165–9.CrossRefGoogle Scholar
  16. 16.
    Doyle, J. J., Flagel, L. E., Paterson, A. H., Rapp, R. A., Soltis, D. E., Soltis, P. S., and Wendel, J. F. (2008) Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 42, 443–61.PubMedCrossRefGoogle Scholar
  17. 17.
    Britt, A. B. (1999) Molecular genetics of DNA repair in higher plants. Trends Plant Sci 4, 20–25.PubMedCrossRefGoogle Scholar
  18. 18.
    Kovalchuk, O., Arkhipov, A., Barylyak, I., Karachov, I., Titov, V., Hohn, B., and Kovalchuk, I. (2000) Plants experiencing chronic internal exposure to ionizing radiation exhibit higher frequency of homologous recombination than acutely irradiated plants. Mutat Res 449, 47–56.PubMedCrossRefGoogle Scholar
  19. 19.
    Kovalchuk, I., Kovalchuk, O., Arkhipov, A., and Hohn, B. (1998) Transgenic plants are sensitive bioindicators of nuclear pollution caused by the Chernobyl accident. Nat Biotechnol 16, 1054–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Slade, D., Lindner, A. B., Paul, G., and Radman, M. (2009) Recombination and replication in DNA repair of heavily irradiated Deinococcus radiodurans. Cell 136, 1044–55.PubMedCrossRefGoogle Scholar
  21. 21.
    Sung, P. (1994) Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science 265, 1241–3.PubMedCrossRefGoogle Scholar
  22. 22.
    Bleuyard, J. Y., Gallego, M. E., Savigny, F., and White, C. I. (2005) Differing requirements for the Arabidopsis Rad51 paralogs in meiosis and DNA repair. Plant J 41, 533–45.PubMedCrossRefGoogle Scholar
  23. 23.
    Durrant, W. E., Wang, S., and Dong, X. (2007) Arabidopsis SNI1 and RAD51D regulate both gene transcription and DNA recombination during the defense response. Proc Natl Acad Sci USA 104, 4223–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Inagaki, S., Nakamura, K., and Morikami, A. (2009) A link among DNA replication, recombination, and gene expression revealed by genetic and genomic analysis of TEBICHI gene of Arabidopsis thaliana. PLoS Genet 5, e1000613.PubMedCrossRefGoogle Scholar
  25. 25.
    Molinier, J., Ramos, C., Fritsch, O., and Hohn, B. (2004) CENTRIN2 modulates homologous recombination and nucleotide excision repair in Arabidopsis. Plant Cell 16, 1633–43.PubMedCrossRefGoogle Scholar
  26. 26.
    Molinier, J., Lechner, E., Dumbliauskas, E., and Genschik, P. (2008) Regulation and role of Arabidopsis CUL4-DDB1A-DDB2 in maintaining genome integrity upon UV stress. PLoS Genet 4, e1000093.PubMedCrossRefGoogle Scholar
  27. 27.
    Lieberman, M., Segev, O., Gilboa, N., Lalazar, A., and Levin, I. (2004) The tomato homolog of the gene encoding UV-damaged DNA binding protein 1 (DDB1) underlined as the gene that causes the high pigment-1 mutant phenotype. Theor Appl Genet 108, 1574–81.PubMedCrossRefGoogle Scholar
  28. 28.
    Yin, H., Zhang, X., Liu, J., Wang, Y., He, J., Yang, T., Hong, X., Yang, Q., and Gong, Z. (2009) Epigenetic regulation, somatic homologous recombination, and abscisic acid signaling are influenced by DNA polymerase epsilon mutation in Arabidopsis. Plant Cell 21, 386–402.PubMedCrossRefGoogle Scholar
  29. 29.
    Farrona, S., Hurtado, L., Bowman, J. L., and Reyes, J. C. (2004) The Arabidopsis thaliana SNF2 homolog AtBRM controls shoot development and flowering. Development 131, 4965–75.PubMedCrossRefGoogle Scholar
  30. 30.
    Shaked, H., Avivi-Ragolsky, N., and Levy, A. A. (2006) Involvement of the Arabidopsis SWI2/SNF2 chromatin remodeling gene family in DNA damage response and recombination. Genetics 173, 985–94.PubMedCrossRefGoogle Scholar
  31. 31.
    Mengiste, T. and Paszkowski, J. (1999) Prospects for the precise engineering of plant genomes by homologous recombination. Biol Chem 380, 749–58.PubMedCrossRefGoogle Scholar
  32. 32.
    Schaefer, D. G. and Zryd, J. P. (1997) Efficient gene targeting in the moss Physcomitrella ­patens. Plant J 11, 1195–206.PubMedCrossRefGoogle Scholar
  33. 33.
    Rensing, S. A., Lang, D., Zimmer, A. D., Terry, A., Salamov, A., Shapiro, H., Nishiyama, T., Perroud, P. F., Lindquist, E. A., Kamisugi, Y., Tanahashi, T., Sakakibara, K., Fujita, T., Oishi, K., Shin, I. T., Kuroki, Y., Toyoda, A., Suzuki, Y., Hashimoto, S., Yamaguchi, K., Sugano, S., Kohara, Y., Fujiyama, A., Anterola, A., Aoki, S., Ashton, N., Barbazuk, W. B., Barker, E., Bennetzen, J. L., Blankenship, R., Cho, S. H., Dutcher, S. K., Estelle, M., Fawcett, J. A., Gundlach, H., Hanada, K., Heyl, A., Hicks, K. A., Hughes, J., Lohr, M., Mayer, K., Melkozernov, A., Murata, T., Nelson, D. R., Pils, B., Prigge, M., Reiss, B., Renner, T., Rombauts, S., Rushton, P. J., Sanderfoot, A., Schween, G., Shiu, S. H., Stueber, K., Theodoulou, F. L., Tu, H., Van de Peer, Y., Verrier, P. J., Waters, E., Wood, A., Yang, L., Cove, D., Cuming, A. C., Hasebe, M., Lucas, S., Mishler, B. D., Reski, R., Grigoriev, I. V., Quatrano, R. S., and Boore, J. L. (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319, 64–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Higgins, J. D., Armstrong, S. J., Franklin, F. C., and Jones, G. H. (2004) The Arabidopsis MutS homolog AtMSH4 functions at an early step in recombination: evidence for two classes of recombination in Arabidopsis. Genes Dev 18, 2557–70.PubMedCrossRefGoogle Scholar
  35. 35.
    Franklin, A. E., McElver, J., Sunjevaric, I., Rothstein, R., Bowen, B., and Cande, W. Z. (1999) Three-dimensional microscopy of the Rad51 recombination protein during meiotic prophase. Plant Cell 11, 809–24.PubMedGoogle Scholar
  36. 36.
    Puchta, H. and Hohn, B. (1991) The mechanism of extrachromosomal homologous DNA recombination in plant cells. Mol Gen Genet 230, 1–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Swoboda, P., Gal, S., Hohn, B., and Puchta, H. (1994) Intrachromosomal homologous recombination in whole plants. EMBO J 13, 484–9.PubMedGoogle Scholar
  38. 38.
    Puchta, H. (1999) Use of I-Sce I to induce DNA double-strand breaks in Nicotiana. Methods Mol Biol 113, 447–51.PubMedCrossRefGoogle Scholar
  39. 39.
    Siebert, R. and Puchta, H. (2002) Efficient repair of genomic double-strand breaks by homologous recombination between directly repeated sequences in the plant genome. Plant Cell 14, 1121–31.PubMedCrossRefGoogle Scholar
  40. 40.
    Athma, P. and Peterson, T. (1991) Ac induces homologous recombination at the maize P locus. Genetics 128, 163–73.PubMedGoogle Scholar
  41. 41.
    Shalev, G. and Levy, A. A. (1997) The maize transposable element Ac induces recombination between the donor site and an homologous ectopic sequence. Genetics 146, 1143–51.PubMedGoogle Scholar
  42. 42.
    Puchta, H. (1999) Double-strand break-induced recombination between ectopic homologous sequences in somatic plant cells. Genetics 152, 1173–81.PubMedGoogle Scholar
  43. 43.
    Opperman, R., Emmanuel, E., and Levy, A. A. (2004) The effect of sequence divergence on recombination between direct repeats in Arabidopsis. Genetics 168, 2207–15.PubMedCrossRefGoogle Scholar
  44. 44.
    Emmanuel, E., Yehuda, E., Melamed-Bessudo, C., Avivi-Ragolsky, N., and Levy, A. A. (2006) The role of AtMSH2 in homologous recombination in Arabidopsis thaliana. EMBO Rep 7, 100–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Li, L., Jean, M., and Belzile, F. (2006) The impact of sequence divergence and DNA mismatch repair on homeologous recombination in Arabidopsis. Plant J 45, 908–16.PubMedCrossRefGoogle Scholar
  46. 46.
    Dooner, H. K. and He, L. (2008) Maize genome structure variation: interplay between retrotransposon polymorphisms and genic recombination. Plant Cell 20, 249–58.PubMedCrossRefGoogle Scholar
  47. 47.
    Al-Kaff, N., Knight, E., Bertin, I., Foote, T., Hart, N., Griffiths, S., and Moore, G. (2008) Detailed dissection of the chromosomal region containing the Ph1 locus in wheat Triticum aestivum: with deletion mutants and expression profiling. Ann Bot 101, 863–72.PubMedCrossRefGoogle Scholar
  48. 48.
    Korzun, V., Borner, A., Siebert, R., Malyshev, S., Hilpert, M., Kunze, R., and Puchta, H. (1999) Chromosomal location and genetic mapping of the mismatch repair gene homologs MSH2, MSH3, and MSH6 in rye and wheat. Genome 42, 1255–7.PubMedGoogle Scholar
  49. 49.
    Dong, C., Whifford, R., and Langridge, P. (2002) A DNA mismatch repair gene links to the Ph2 locus in wheat. Genome 45, 116–24.PubMedCrossRefGoogle Scholar
  50. 50.
    Nicolas, S. D., Leflon, M., Monod, H., Eber, F., Coriton, O., Huteau, V., Chevre, A. M., and Jenczewski, E. (2009) Genetic regulation of meiotic cross-overs between related genomes in Brassica napus haploids and hybrids. Plant Cell 21, 373–85.PubMedCrossRefGoogle Scholar
  51. 51.
    Endo, M., Ishikawa, Y., Osakabe, K., Nakayama, S., Kaya, H., Araki, T., Shibahara, K. I., Abe, K., Ichikawa, H., Valentine, L., Hohn, B., and Toki, S. (2006) Increased frequency of homologous recombination and T-DNA integration in Arabidopsis CAF-1 mutants. EMBO J 25, 5579–90.PubMedCrossRefGoogle Scholar
  52. 52.
    Kirik, A., Pecinka, A., Wendeler, E., and Reiss, B. (2006) The chromatin assembly factor subunit FASCIATA1 is involved in homologous recombination in plants. Plant Cell 18, 2431–42.PubMedCrossRefGoogle Scholar
  53. 53.
    Shaked, H., Melamed-Bessudo, C., and Levy, A. A. (2005) High-frequency gene ­targeting in Arabidopsis plants expressing the yeast RAD54 gene. Proc Natl Acad Sci USA 102, 12265–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Hanin, M., Mengiste, T., Bogucki, A., and Paszkowski, J. (2000) Elevated levels of intrachromosomal homologous recombination in Arabidopsis overexpressing the MIM gene. Plant J 24, 183–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Takeda, S., Tadele, Z., Hofmann, I., Probst, A. V., Angelis, K. J., Kaya, H., Araki, T., Mengiste, T., Scheid, O. M., Shibahara, K., Scheel, D., and Paszkowski, J. (2004) BRU1, a novel link between responses to DNA ­damage and epigenetic gene silencing in Arabidopsis. Genes Dev 18, 782–93.PubMedCrossRefGoogle Scholar
  56. 56.
    Anderson, L. K. and Stack, S. M. (2005) Recombination nodules in plants. Cytogenet Genome Res 109, 198–204.PubMedCrossRefGoogle Scholar
  57. 57.
    Mortensen, U. H., Lisby, M., and Rothstein, R. (2009) Rad52. Curr Biol 19, R676–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Di Primio, C., Galli, A., Cervelli, T., Zoppe, M., and Rainaldi, G. (2005) Potentiation of gene targeting in human cells by expression of Saccharomyces cerevisiae Rad52. Nucleic Acids Res 33, 4639–48.PubMedCrossRefGoogle Scholar
  59. 59.
    Siaud, N., Dray, E., Gy, I., Gerard, E., Takvorian, N., and Doutriaux, M. P. (2004) Brca2 is involved in meiosis in Arabidopsis thaliana as suggested by its interaction with Dmc1. EMBO J 23, 1392–401.PubMedCrossRefGoogle Scholar
  60. 60.
    Tsutsui, Y., Khasanov, F. K., Shinagawa, H., Iwasaki, H., and Bashkirov, V. I. (2001) Multiple interactions among the components of the recombinational DNA repair system in Schizosaccharomyces pombe. Genetics 159, 91–105.PubMedGoogle Scholar
  61. 61.
    Milne, G. T. and Weaver, D. T. (1993) Dominant negative alleles of RAD52 reveal a DNA repair/recombination complex including Rad51 and Rad52. Genes Dev 7, 1755–65.PubMedCrossRefGoogle Scholar
  62. 62.
    Shen, Z., Cloud, K. G., Chen, D. J., and Park, M. S. (1996) Specific interactions between the human RAD51 and RAD52 proteins. J Biol Chem 271, 148–52.PubMedCrossRefGoogle Scholar
  63. 63.
    Du, Y., Zhou, J., Fan, J., Shen, Z., and Chen, X. (2009) Streamline proteomic approach for characterizing protein-protein interaction network in a RAD52 protein complex. J Proteome Res 8, 2211–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Li, W., Chen, C., Markmann-Mulisch, U., Timofejeva, L., Schmelzer, E., Ma, H., and Reiss, B. (2004) The Arabidopsis AtRAD51 gene is dispensable for vegetative development but required for meiosis. Proc Natl Acad Sci USA 101, 10596–601.PubMedCrossRefGoogle Scholar
  65. 65.
    Alexeev, A., Mazin, A., and Kowalczykowski, S. C. (2003) Rad54 protein possesses chromatin-remodeling activity stimulated by the Rad51-ssDNA nucleoprotein filament. Nat Struct Biol 10, 182–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Klutstein, M., Shaked, H., Sherman, A., Avivi-Ragolsky, N., Shema, E., Zenvirth, D., Levy, A. A., and Simchen, G. (2008) Functional conservation of the yeast and Arabidopsis RAD54-like genes. Genetics 178, 2389–97.PubMedCrossRefGoogle Scholar
  67. 67.
    Paszkowski, J., Baur, M., Bogucki, A., and Potrykus, I. (1988) Gene targeting in plants. EMBO J 7, 4021–6.PubMedGoogle Scholar
  68. 68.
    Terada, R., Urawa, H., Inagaki, Y., Tsugane, K., and Iida, S. (2002) Efficient gene targeting by homologous recombination in rice. Nat Biotechnol 20, 1030–4.PubMedCrossRefGoogle Scholar
  69. 69.
    Salomon, S. and Puchta, H. (1998) Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J 17, 6086–95.PubMedCrossRefGoogle Scholar
  70. 70.
    Bibikova, M., Carroll, D., Segal, D. J., Trautman, J. K., Smith, J., Kim, Y. G., and Chandrasegaran, S. (2001) Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol 21, 289–97.PubMedCrossRefGoogle Scholar
  71. 71.
    Shukla, V. K., Doyon, Y., Miller, J. C., DeKelver, R. C., Moehle, E. A., Worden, S. E., Mitchell, J. C., Arnold, N. L., Gopalan, S., Meng, X., Choi, V. M., Rock, J. M., Wu, Y. Y., Katibah, G. E., Zhifang, G., McCaskill, D., Simpson, M. A., Blakeslee, B., Greenwalt, S. A., Butler, H. J., Hinkley, S. J., Zhang, L., Rebar, E. J., Gregory, P. D., and Urnov, F. D. (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459, 437–41.PubMedCrossRefGoogle Scholar
  72. 72.
    Townsend, J. A., Wright, D. A., Winfrey, R. J., Fu, F., Maeder, M. L., Joung, J. K., and Voytas, D. F. (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459, 442–5.PubMedCrossRefGoogle Scholar
  73. 73.
    Soutoglou, E., Dorn, J. F., Sengupta, K., Jasin, M., Nussenzweig, A., Ried, T., Danuser, G., and Misteli, T. (2007) Positional stability of single double-strand breaks in mammalian cells. Nat Cell Biol 9, 675–82.PubMedCrossRefGoogle Scholar
  74. 74.
    Gorbunova, V. and Levy, A. A. (1997) Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Res 25, 4650–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Rubin, E. and Levy, A. A. (1997) Abortive gap repair: the underlying mechanism for Ds elements formation. Mol Cell Biol 17, 6294–302.PubMedGoogle Scholar
  76. 76.
    Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J., and Stahl, F. W. (1983) The double-strand break repair model of recombination. Cell 33, 25–35.PubMedCrossRefGoogle Scholar

Copyright information

© Spirnger Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Plant SciencesThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations