Advertisement

Recent Advances in Plant Transformation

  • Shyamkumar Barampuram
  • Zhanyuan J. ZhangEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 701)

Abstract

Plant genetic engineering has become one of the most important molecular tools in the modern molecular breeding of crops. Over the last decade, significant progress has been made in the development of new and efficient transformation methods in plants. Despite a variety of available DNA delivery methods, Agrobacterium- and biolistic-mediated transformation remain the two predominantly employed approaches. In particular, progress in Agrobacterium-mediated transformation of cereals and other recalcitrant dicot species has been quite remarkable. In the meantime, other transgenic-enabling technologies have emerged, including generation of marker-free transgenics, gene targeting, and chromosomal engineering. Although transformation of some plant species or elite germplasm remains a challenge, further advancement in transformation technology is expected because the mechanisms of governing the regeneration and transformation processes are now better understood and are being creatively applied to designing improved transformation methods or to developing new enabling technologies.

Key words

Agrobacterium Biolistic Genetic engineering Marker free Transgenic plant 

Notes

Acknowledgments

The authors would like to thank Dr. Seth Findley (University of Missouri-Columbia, USA) for his critical proofreading. This work is supported by National Science Foundation.

References

  1. 1.
    Job, D. (2002) Plant biotechnology in agriculture. Biochimie 84, 1105–1110.PubMedCrossRefGoogle Scholar
  2. 2.
    Vain, P. (2007) Thirty years of plant transformation technology development. Plant Biotechnol. J. 5, 221–229.PubMedCrossRefGoogle Scholar
  3. 3.
    Fischer, R., Stoger, E., Schillberg, S., Christou, P., and Twyman, R.M. (2004) Plant based production of biopharmaceuticals. Curr. Opin. Plant Biol. 7, 152–158.PubMedCrossRefGoogle Scholar
  4. 4.
    Tzfira, T., and Citovsky, V. (2006) Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr. Opin. Biotechnol. 17, 147–154.PubMedCrossRefGoogle Scholar
  5. 5.
    Broothaerts, W., Mitchell, H.J., Weir, B., Kaines, S., Smith, L.M., Yang, W., Mayer, J.E., Roa-Rodríguez, C., and Jefferson, R.A. (2005) Gene transfer to plants by diverse species of bacteria. Nature 433, 629–633.PubMedCrossRefGoogle Scholar
  6. 6.
    Hiei, Y., Ohta, S., Komari, T., and Kumashiro, T. (1994) Efficient transformation of rice (Oryza sativa) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6, 271–282.Google Scholar
  7. 7.
    Leelavathi, S., Sunnichan, V.G., Kumria, R., Vijaykanth, G.P., Bhatnagar, R.K., and Reddy, V.S. (2004) A simple and rapid Agrobacterium-mediated transformation protocol for cotton (Gossypium hirsutum L.): embryogenic calli as a source to generate large numbers of transgenic plants. Plant Cell Rep. 22, 465–470.PubMedCrossRefGoogle Scholar
  8. 8.
    Zhang-Hua, H., Jin-Qing, C., Guan-Ting, W., Wei, J., Chun-Xiu, L., Rui-Zhi, H., Fu-Lin, W., Zhi-Hong, L., and Xiao-Yun, C. (2005) Highly efficient transformation and plant regeneration of tall fescue mediated by Agrobacterium tumefaciens. J. Plant. Physiol. Mol. Biol. 31, 149–159.Google Scholar
  9. 9.
    Sanford, J.C. (1990) Biolistic plant transformation. Physiol. Plant. 79, 206–209.CrossRefGoogle Scholar
  10. 10.
    Taylor, N.J., and Fauquet, C.M. (2002) Microparticle bombardment as a tool in plant science and agricultural biotechnology. DNA Cell Biol. 21, 963–977.PubMedCrossRefGoogle Scholar
  11. 11.
    Rakoczy-Trojanowska, M. (2002) Alternative methods of plant transformation – a short review. Cell Mol. Biol. Lett. 7, 849–858.PubMedGoogle Scholar
  12. 12.
    Scutta, C.P., Zubko, E., and Meyer, P. (2002) Techniques for the removal of marker genes from transgenic plants. Biochimie 84, 1119–1126.CrossRefGoogle Scholar
  13. 13.
    Darbani, B., Eimanifar, A., Stewart, C.N., Jr., and Camargo, W.N. (2007) Methods to produce marker-free transgenic plants. Biotechnol. J. 2, 83–90.PubMedCrossRefGoogle Scholar
  14. 14.
    Yu, W., Lamb, J.C., Han, F., and Birchler, J.A. (2006) Telomere-mediated chromosomal truncation in maize. Proc. Natl. Acad. Sci. USA 103, 17331–17336.PubMedCrossRefGoogle Scholar
  15. 15.
    Zupan, J., Muth, T.R., Draper, O., and Zambryski, P. (2000) The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J. 23, 11–28.PubMedCrossRefGoogle Scholar
  16. 16.
    Christie, P.J. (1997) Agrobacterium tumefaciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in Eubacteria. J. Bacteriol. 179, 3085–3094.PubMedGoogle Scholar
  17. 17.
    Tzfira, T., Vaidya, M., and Citovsky, V. (2002) Increasing plant susceptibility to Agrobacterium infection by overexpression of the Arabidopsis nuclear protein VIP1 Proc. Natl. Acad. Sci. USA 99, 10435–10440.PubMedCrossRefGoogle Scholar
  18. 18.
    Anand, A., Krichevsky, A., Schornack, S., Lahaye, T., Tzfira, T., Tang, Y., Citovsky, V., and Kirankumar, S.M. (2007) Arabidopsis VIRE2 INTERACTING PROTEIN2 is required for Agrobacterium T-DNA Integration in plants. Plant Cell 19, 1695–1708.PubMedCrossRefGoogle Scholar
  19. 19.
    Tzfira, T., and Citovsky, V. (2002) Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends Cell Biol. 12, 121–129.PubMedCrossRefGoogle Scholar
  20. 20.
    Bako, L., Umeda, M., Tiburcio, A.F., Schell, J., and Koncz, C. (2003) The VirD2 pilot protein of Agrobacterium-transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants. Proc. Natl. Acad. Sci. USA 100, 10108–10113.PubMedCrossRefGoogle Scholar
  21. 21.
    Gelvin, S.B. (2000) Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu. Rev. Plant. Physiol. 51, 223–256.CrossRefGoogle Scholar
  22. 22.
    Veena, J.H., Doerge, R.W., and Gelvin, S.B. (2003) Transfer of T-DNA and vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression. Plant J. 35, 219–236.PubMedCrossRefGoogle Scholar
  23. 23.
    Lacroix, B., Kozlovosky, S.V., and Citovsky, V. ( 2008) Recent patents on Agrobacterium-mediated gene and protein transfer for research and biotechnology. Recent Pat. DNA Gene Seq. 2, 69–81.PubMedCrossRefGoogle Scholar
  24. 24.
    Hoekema, A., Hirsch, P.R., Hooykaas, P.J.J., and Schilperoort, R.A. (1983) A binary plant vector strategy based on separation of vir and T-region of the Agrobacterium tumefaciens Ti plasmid. Nature 303, 179–180.CrossRefGoogle Scholar
  25. 25.
    Hamilton, C.M. (1997) A binary-BAC system for plant transformation with high-molecular-weight DNA. Gene 200, 107–116.PubMedCrossRefGoogle Scholar
  26. 26.
    Rui-Feng, H., Yuan-Yuan, W., Bo, D., Ming, T., Ai-Qing, Y., Li-Li, Z., and Guang-Cun, H. (2006) Development of transformation system of rice based on binary bacterial artificial chromosome (BIBAC) vector. Acta Gen. Sin. 33, 269–276.CrossRefGoogle Scholar
  27. 27.
    Komari, T. (1990) Transformation of cultured cells of Chenopodium quinoa by binary vectors that carry a fragment of DNA from the virulence region of pTiBo542. Plant Cell Rep. 9, 303–306.CrossRefGoogle Scholar
  28. 28.
    Lee, L., and Gelvin, S.B. (2008) T-DNA binary vectors and systems. Plant Physiol. 146, 325–332.PubMedCrossRefGoogle Scholar
  29. 29.
    Ishida, Y., Saito, H., Ohta, S., Hiei, Y., Komari, T., and Kumashiro, T. (1996) High efficiency transformation of maize (Zea mays) mediated by Agrobacterium tumefaciens. Nat. Biotechnol. 14, 745–750.PubMedCrossRefGoogle Scholar
  30. 30.
    Khanna, H.K., and Daggard, G.E. (2003) Agrobacterium tumefaciens-mediated transformation of wheat using a super binary vector and a polyamine supplemented regeneration medium. Plant Cell Rep. 21, 429–436.PubMedGoogle Scholar
  31. 31.
    Lee, L.-Y., Kononov, M.E., Bassuner, B., Frame, B.R., Wang, K., and Gelvin, S.B. (2007) Novel pant transformation vectors containing the superpromoter. Plant Physiol. 145, 1294–1300.PubMedCrossRefGoogle Scholar
  32. 32.
    Cheng, M., Lowe, B.A., Spencer, T.M., Ye, X., and Armstrong, C.L. (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell Dev. Biol. Plant 40, 31–45.CrossRefGoogle Scholar
  33. 33.
    Opabode, J.T. (2006) Agrobacterium mediated transformation of plants: emerging factors that influence efficiency. Biotech. Mol. Biol. Rev. 1, 12–20.Google Scholar
  34. 34.
    Zhao, Z., Cai, T., Tagliani, L., Miller, M., Wang, N., Pang, H., Rudert, M., Schroeder, S., Hondred, D., Seltzer, J., and Pierce, D. (2000) Agrobacterium-mediated sorghum transformation. Plant Mol. Biol. 44, 789–798.PubMedCrossRefGoogle Scholar
  35. 35.
    Nandakumar, R., Chen, L., and Rogers, S.M.D. (2004) Factors affecting the Agrobacterium-mediated transient transformation of the wetland monocot, Typha latifolia. Plant Cell Tiss. Organ Cult. 79, 31–38.CrossRefGoogle Scholar
  36. 36.
    Herath, S.P., Suzuki, T., and Hattori, K. (2005) Factors influencing Agrobacterium-mediated genetic transformation of kenaf. Plant Cell Tiss. Organ Cult. 82, 201–206.CrossRefGoogle Scholar
  37. 37.
    Chateau, S., Sangwa, R.S., and Sangwan-Norreel, B.S. (2000) Competence of Arabidopsis thaliana genotypes and mutants for Agrobacterium tumefaciens-mediated gene transfer: role of phytohormones. J. Exp. Bot. 51, 1961–1968.PubMedCrossRefGoogle Scholar
  38. 38.
    Dan, Y. (2008) Biological functions of antioxidants in plant transformation. In Vitro Cell Dev. Biol. Plant 44, 149–161.CrossRefGoogle Scholar
  39. 39.
    Enriquez-Obregon, G.A., Vazquez-Padron, R.I., Prieto-Samsonov, D.L., de la Riva, G.A., and Selman-Housein, G. (1998) Herbicide-resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium-mediated transformation. Planta 205, 20–27.Google Scholar
  40. 40.
    Olhoft, P.M., and Somers, D.A. (2001) l-Cysteine increases Agrobacterium mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Rep. 20, 706–711.CrossRefGoogle Scholar
  41. 41.
    Vega, J., Yu, W., Kennon, A.M., Chen, X., and Zhang, Z.J. (2008) Improvement of Agrobacterium-mediated transformation in Hi-II maize (Zea mays L.) using standard binary vectors. Plant Cell Rep. 27, 297–305.PubMedCrossRefGoogle Scholar
  42. 42.
    Frame, B.R., Shou, H., Chikwamba, R.K., Zhang, Z., Xiang, C.I., Fonger, T.M., Pegg, S.E.K., Li, B., Nettleton, D.S., Pei, D., and Wang, K. (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol. 129, 13–22.PubMedCrossRefGoogle Scholar
  43. 43.
    Dan, Y.A. (2004) A novel plant transformation technology-Lipoic acid. In vitro Cell Dev. Biol. Plant 42, 18.Google Scholar
  44. 44.
    Dan, Y., Armstrong, C.L., Dong, J., Feng, X., Fry, J.E., Keithly, G.E., Martinell, B.J., Roberts, G.A., Smith, L.A., Tan, L.J., and Duncan, D.R. (2009) Lipoic acid a unique plant transformation enhancer. In Vitro Cell Dev. Biol. Plant (DOI:  10.1007/s11627-009-9227-5).Google Scholar
  45. 45.
    Cheng, M., Fry, J.E., Pang, S., Zhou, I., Hironaka, C., Duncan, D.R.I., Conner, T.W.L., and Wang, Y. (1997) Genetic transformation of wheat mediated by Agrobacterium tumefacien. Plant Physiol. 115, 971–980.PubMedGoogle Scholar
  46. 46.
    Tang, W. (2003) Additional virulence genes and sonication enhance Agrobacterium tumefaciens-mediated loblolly pine transformation. Plant Cell Rep. 21, 555–562.PubMedGoogle Scholar
  47. 47.
    Pena, L., Perez, R.M., Cervera, M., Juarez, J.A., and Navarro, L. (2004) Early events in Agrobacterium-mediated genetic transformation of citrus explants. Ann. Bot. (Lond.) 94, 67–74.CrossRefGoogle Scholar
  48. 48.
    Arias, R.S., Filichkin, S.A., and Strauss, S.H. (2006) Arias divide and conquer: development and cell cycle genes in plant transformation. Trends Biotechnol. 24, 267–273.PubMedCrossRefGoogle Scholar
  49. 49.
    Grafi, G. (2004) How cells dedifferentiate: a lesson from plants. Dev. Biol. 268, 1–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Riou-Khamlichi, C., Huntley, R., Jacqmard, A., and Murray, J.A. (1999) Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science 283, 1541–1544.PubMedCrossRefGoogle Scholar
  51. 51.
    De Veylder, L., Beeckman, T., Beemster, G.T.S., Engler, J.D.A., Ormenese, S., Maes, S., Naudts, M., Der Schueren, E.V., Jacqmard, A., Engler, G., and Inze, D. (2002) Control of proliferation, endoreduplication and differentiation by the Arabidopsis E2Fa–DPa transcription factor. EMBO J. 21, 1360–1368.PubMedCrossRefGoogle Scholar
  52. 52.
    Gordon-Kamm, W., Dilkes, B.P., Lowe, K., Hoerster, G., Sun, X., Ross, M., Church, L., Bunde, C., Farrell, J., Hill, P., Maddock, S., Snyder, J., Sykes, L., Li, Z., Woo, Y.-M., Bidney, D., and Larkins, B.A. (2002) Stimulation of the cell cycle and maize transformation by disruption of the plant retinoblastoma pathway. Proc. Natl. Acad. Sci. USA 99, 11975–11980.PubMedCrossRefGoogle Scholar
  53. 53.
    Mysore, K.S., Nam, J., and Gelvin, S. (2000) An Arabidopsis histone H2A mutant is deficient in Agrobacterium T-DNA integration. Proc. Natl. Acad. Sci. USA 97, 948–953.PubMedCrossRefGoogle Scholar
  54. 54.
    Vlieghe, K., Vuylsteke, M., Florquin, K., Rombauts, S., Maes, S., Ormenese, S., Hummelen, P.V., de Peer, Y.V., Inze, D., and De Veylder, L. (2003) Microarray analysis of E2Fa–DPa-overexpressing plants uncovers a cross-talking genetic network between DNA replication and nitrogen assimilation. J. Cell Sci. 116, 4249–4259.PubMedCrossRefGoogle Scholar
  55. 55.
    Zambre, M., Geerts, P., Maquet, A., Montagu, M.V., Dillen, W., and Angenon, G. (2001) Regeneration of fertile plants from callus in Phaseolus polyanthus Greenman (year bean). Ann. Bot. (Lond.) 88, 371–377.CrossRefGoogle Scholar
  56. 56.
    Taoka, K.-I., Yanagimoto, Y., Daimon, Y., Hibara, K.-I., Aida, M., and Tasaka, M. (2004) The NAC domain mediates functional specificity of CUP-SHAPED COTYLEDON proteins. Plant J. 40, 462–473.PubMedCrossRefGoogle Scholar
  57. 57.
    Slightom, J.L., Durand-Tardif, M., Jouanin, L., and Tepfer, D. (1986) Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid. Identification of open reading frames. J. Biol. Chem. 261, 108–121.PubMedGoogle Scholar
  58. 58.
    Collier, R., Fuchs, B., Walter, N., Kevin, L.W., and Taylor, C.G. (2005) Ex vitro composite plants: an inexpensive, rapid method for root biology Plant J. 43, 449–457.PubMedCrossRefGoogle Scholar
  59. 59.
    Giri, A., and Narasu, M.L. (2000) Transgenic hairy roots: recent trends and applications. Biotechnol. Adv. 18, 1–22.PubMedCrossRefGoogle Scholar
  60. 60.
    Georgiev, M.I., Pavlov, A.I., and Bley, T. (2007) Hairy root type plant in vitro systems as sources of bioactive substances. Appl. Microbiol. Biotechnol. 74, 1175–1185.PubMedCrossRefGoogle Scholar
  61. 61.
    Seki, H., Nishizawa, T., Tanaka, N., Niwa, Y., Yoshida, S., and Muranaka, T. (2005) Hairy root-activation tagging: a high-throughput system for activation tagging in transformed hairy roots. Plant Mol. Biol. 59, 793–807.PubMedCrossRefGoogle Scholar
  62. 62.
    Narayanan, R.A., Atz, R., Denny, R., Young, N.D., and Somers, D.A. (1999) Expression of soybean cyst nematode resistance in transgenic hairy roots of soybean. Crop Sci. 39, 1680–1686.CrossRefGoogle Scholar
  63. 63.
    Skarjinskaia, M., Karl, J., Araujo, A., Ruby, K., Rabindran, S., Streatfield, S.J., and Yusibov, V. (2008) Production of recombinant proteins in clonal root cultures using episomal expression vectors. Biotechnol. Bioeng. 100, 814–819.PubMedCrossRefGoogle Scholar
  64. 64.
    Kuster, H., Vieweg, M.F., Manthey, K., Baier, M.C., Hohnjec, N., and Perlick, A.M. (2007) Identification and expression regulation of symbiotically activated legume genes. Phytochemistry 68, 8–18.PubMedCrossRefGoogle Scholar
  65. 65.
    Breitler, J.C., Labeyrie, A., Meynard, D., Legavre, T., and Guiderdoni, E. (2002) Efficient microprojectile bombardment-mediated transformation of rice using gene cassettes. Theor. Appl. Genet. 104, 709–719.PubMedCrossRefGoogle Scholar
  66. 66.
    Christou, P. (1995) Strategies for variety-independent genetic transformation of important cereals, legumes and woody species utilising particle bombardment. Euphyica 85, 13–27.CrossRefGoogle Scholar
  67. 67.
    Campbell, B.T., Baeziger, P.S., Mitra, A., Sato, S., and Clemente, T. (2000) Inheritance of multiple genes in wheat. Crop Sci. 40, 1133–1141.CrossRefGoogle Scholar
  68. 68.
    Schmidt, M.A., Lafayette, P.R., Artelt, B.A., and Parrott, W.A. (2008) A comparison of strategies for transformation with multiple genes via microprojectile-mediated bombardment. In Vitro Cell Dev. Biol. Plant 44, 162–168.Google Scholar
  69. 69.
    Agrawal, P.K., Kohli, A., Twyman, R.M., and Christou, P. (2005) Transformation of plants with multiple cassettes generates simple transgene integration patterns and high expression levels. Mol. Breed. 16, 247–260.CrossRefGoogle Scholar
  70. 70.
    Schmidt, M.A., Tucker, D.M., Cahoon, E.B., and Parrott, W.A. (2005) Towards normalization of soybean somatic embryo maturation. Plant Cell Rep. 24, 383–391.PubMedCrossRefGoogle Scholar
  71. 71.
    Pawlowski, W.P., and Somers, D.A. (1996) Transgene inheritance in plants genetically engineered by microprojectile bombardment. Mol. Biotechnol. 6, 17–30.PubMedCrossRefGoogle Scholar
  72. 72.
    Kohli, A., Gahakwa, D., Vain, P., Laurie, D.A., and Christou, P. (1999) Transgene expression in rice engineered through particle bombardment: molecular factors controlling stable expression and transgene silencing. Planta 208, 88–97.CrossRefGoogle Scholar
  73. 73.
    Lowe, B.A., Prakash, N.S., Melissa, W., Mann, M.T., Spencer, T.M., and Boddupalli, R.S. (2009) Enhanced single copy integration events in corn via particle bombardment using low quantities of DNA. Transgenic Res. 18, 831–840 (DOI: 10.1007/s11248-009-9265-0).PubMedGoogle Scholar
  74. 74.
    Shimamoto, K., Teralda, R., Izawa, T., and Fujimoto, H. (1989) Fertile transgenic rice plants regenerated from transformed protoplasts. Nature 338, 274–276.CrossRefGoogle Scholar
  75. 75.
    Salmenkallio-Marttila, M., Aspegren, K., Kerman, S., Kurt, U., Mannonen, L., Ritala, A., Teeriz, T.H., and Kauppinen, V. (1995) Transgenic barley (Hordeum vulgare L.) by electroporation of protoplasts Plant Cell Rep. 15, 301–304.CrossRefGoogle Scholar
  76. 76.
    Daveya, M.R., Anthonya, P., Powera, J.B., and Loweb, K.C. (2005) Plant protoplasts: status and biotechnological perspectives. Biotechnol. Adv. 23, 131–171.CrossRefGoogle Scholar
  77. 77.
    Sawahel, W.A. (2001) Stable genetic transformation of cotton plants using polybrene spermidine treatment. Plant Mol. Biol. Rep. 19, 377a–377f.CrossRefGoogle Scholar
  78. 78.
    Gad, A.E., Rosenberg, N., and Altman, A. (1990) Liposome-mediated gene delivery into plant cells. Physiol. Plant. 79, 177–183.CrossRefGoogle Scholar
  79. 79.
    Wordragen, M.V., Roshani, S., Ruud, V., Regis, P., Abvan, K., and Pim, Z. (1997) Liposome-mediated transfer of YAC DNA to tobacco cells. Plant Mol. Biol. Rep. 15, 170–178.CrossRefGoogle Scholar
  80. 80.
    Kaeppler, H., Somers, D.A., Rines, H.W., and Cockburn, A.F. (1992) Silicon carbide fiber-mediated stable transformation of plant cells. Theor. Appl. Genet. 84, 560–566.CrossRefGoogle Scholar
  81. 81.
    Frame, B.R., Drayton, P.R., Bagnall, S.V., Lewnau, C.J., Bullock, W.P., Wilson, H.M., Dunwell, J.M., Thompson, J.A., and Wang, K. (1994) Production of fertile transgenic maize plants by silicon carbide whisker-mediated transformation. Plant J. 6, 941–948.CrossRefGoogle Scholar
  82. 82.
    Singh, N., and Chawla, H.S. (1999) Use of silicon carbide fibers for Agrobacterium-mediated transformation in wheat. Curr. Sci. 76, 1483–1485.Google Scholar
  83. 83.
    Nagatani, N., Honda, H., Shimada, T., and Kobayashi, T. (1997) DNA delivery into rice cells and transformation using silicon carbide whiskers. Biotechnol. Tech. 11, 781–786.CrossRefGoogle Scholar
  84. 84.
    Torney, F., Trewyn, B.G., Lin, V.S.Y., and Wang, K. (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature Nanotech. 2, 295–300.PubMedCrossRefGoogle Scholar
  85. 85.
    Nandiyanto, A.B.D., Kim, S.G., Iskandar, F., and Okuyama, K. (2009) Synthesis of silica nanoparticles with nanometer-size controllable mesopores and outer diameters. Microporous Mesoporous Mater. 120, 447–453.CrossRefGoogle Scholar
  86. 86.
    Crossway, A., Oakes, J.W., Irvine, J.M., Ward, B., Knauf, V.C., and Shewmaker, C.K. (1986) Integration of foreign DNA following microinjection of tobacco mesophyll protoplasts. Mol. Gen. Genet. 202, 179–185.CrossRefGoogle Scholar
  87. 87.
    Jones-Villeneuve, E., Huang, B., Prudhome, I., Bird, S., Kemble, R., Hattori, J., and Miki, B. (1995) Assessment of microinjection for introducing DNA into uninuclear microspores of rapeseed. Plant Cell Tiss. Organ Cult. 40, 97–100.CrossRefGoogle Scholar
  88. 88.
    Holm, P.B., Olsen, O., Schnorf, M., Brinch-Pederse, H., and Knudsen, S. (2000) Transformation of barley by microinjection into isolated zygote protoplasts. Transgenic Res. 9, 21–32.PubMedCrossRefGoogle Scholar
  89. 89.
    Lilly, J.W., Havey, M.J., Jackson, S.A., and Jiang, J. (2001) Cytogenomic analysis reveal the structural plasticity of the chloroplast genome in higher plants. Plant Cell 13, 245–254.PubMedGoogle Scholar
  90. 90.
    Maliga, P. (2004) Plastid transformation in higher plants. Annu. Rev. Plant Biol. 55, 289–313.PubMedCrossRefGoogle Scholar
  91. 91.
    Verma, D., and Daniell, H. (2007) Chloroplast vector systems for biotechnology applications. Plant Physiol. 145, 1129–1143.PubMedCrossRefGoogle Scholar
  92. 92.
    Boynton, J.E., Gillham, N.W., Harris, E.H., Hosler, J.P., Johnson, A.M., and Jones, A.R. (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240, 1534–1538.PubMedCrossRefGoogle Scholar
  93. 93.
    Lee, S.M., Kang, K., Chung, H., Yoo, S.H., Xu, X.M., Lee, S.B., Cheong, J.J., Daniell, H., and Kim, M. (2006) Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Mol. Cells 21, 401–410.PubMedGoogle Scholar
  94. 94.
    Kumar, S., Dhingra, A., and Daniell, H. (2004) Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol. Biol. 56, 203–216.PubMedCrossRefGoogle Scholar
  95. 95.
    Daniell, H., Chebolu, S., Kumar, S., Singleton, M., and Falconer, R. (2005) Chloroplast derived vaccine antigens and other therapeutic proteins. Vaccine 23, 1779–1783.PubMedCrossRefGoogle Scholar
  96. 96.
    Rommens, C.M. (2004) All-native DNA transformation: a new approach to plant genetic engineering. Trends Plant Sci. 9, 457–464.PubMedCrossRefGoogle Scholar
  97. 97.
    Bernasconi, P. et al. (1995) A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J. Biol. Chem. 270, 17381–17385.PubMedCrossRefGoogle Scholar
  98. 98.
    Baerson, S.R., Rodriguez, D.J., Tran, M., Feng, M., Biest, N.A., and Dill, G.M. (2002) Glyphosate-resistant goosegrass identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiol. 129, 1265–1275.PubMedCrossRefGoogle Scholar
  99. 99.
    Song, J., Bradeen, J.M., Naess, S.K., Raasch, J.A.,Wielgus, S.M., Haberlach, G.T., Liu, J., Kuang, H., Austin-Phillips, S., Buell, C.R., Helgeson, J.P., and Jiang, J. (2003) Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc. Natl. Acad. Sci. USA 100, 9128–9133.PubMedCrossRefGoogle Scholar
  100. 100.
    Pechan, T., Cohen, A., Williams, W.P., and Luthe, D.S. (2002) Insect feeding mobilizes a unique plant defense protease that disrupts the peritrophic matrix of caterpillars. Proc. Natl. Acad. Sci. USA 99, 13319–13323.PubMedCrossRefGoogle Scholar
  101. 101.
    Wang, E., Wang, R., DeParasis, J., Loughrin, J.H., Gan, S., and Wagner, G.J. (2001) Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance. Nat. Biotechnol. 19, 371–374.PubMedCrossRefGoogle Scholar
  102. 102.
    Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 17, 287–291.PubMedCrossRefGoogle Scholar
  103. 103.
    Miki, B., and Mc Hugh, S. (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J. Biotechnol. 107, 193–232.PubMedCrossRefGoogle Scholar
  104. 104.
    Daley, M., Knauf, V.C., Summerfelt, K.R., and Turner, J.C. (1998) Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants. Plant Cell Rep. 17, 489–496.CrossRefGoogle Scholar
  105. 105.
    Komari, T., Hiei, Y., Saito, Y., Murai, N., and Kumashiro, T. (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J. 10, 165–174.PubMedCrossRefGoogle Scholar
  106. 106.
    Hua, Y., and Rommens, C.M. (2007) Transposition-based plant transformation. Plant Physiol. 143, 570–578.Google Scholar
  107. 107.
    Cotsaftis, O., Sallaud, C., Breitler, J.C., Meynard, D., Greco, R., Pereira, A., and Guiderdoni, E. (2002) Transposon-mediated generation of T-DNA- and marker-free rice plants expressing a Bt endotoxin gene. Mol. Breed. 10, 165–180.CrossRefGoogle Scholar
  108. 108.
    Saelim, L., Phansiri, S., Suksangpanomrung, M., Netrphan, S., and Narangajavana, J. (2009) Evaluation of a morphological marker selection and excision system to generate marker-free transgenic cassava plants. Plant Cell Rep. 28, 445–455.PubMedCrossRefGoogle Scholar
  109. 109.
    Ebinuma, H., and Komamine, A. (2001) MAT (Multi-Auto-Transformation) vector system. The oncogenes of Agrobacterium as positive markers for regeneration and selection of marker-free transgenic plants. In Vitro Cell Dev. Biol. Plant 37, 103–113.CrossRefGoogle Scholar
  110. 110.
    Kuraya, Y., Ohta, S., Fukuda, M., Hiei, Y., Murai, N., Hamada, K., Ueki, T., Imaseki, H., and Komari, T. (2004) Suppression of transfer of non-T-DNA “vector backbone” sequences by multiple left border repeats in vectors for transformation of higher plants mediated by Agrobacterium tumefaciens. Mol. Breed. 14, 309–320.CrossRefGoogle Scholar
  111. 111.
    Yang, A., Su, Q., and An, L. (2009) Ovary-drip transformation: a simple method for directly generating vector- and marker-free transgenic maize (Zea mays L.) with a linear GFP cassette transformation. Planta 229, 793–801.PubMedCrossRefGoogle Scholar
  112. 112.
    Yang, A., Su, Q., An, L., Liu, J., Wu, W., and Qiu, Z. (2009) Detection of vector- and selectable marker-free transgenic maize with a linear GFP cassette transformation via the pollen-tube pathway. J. Biotechnol. 139, 1–5.PubMedCrossRefGoogle Scholar
  113. 113.
    Ye, X., Williams, E.J., Shen, J., Esser, J.A., Nichols, A.M., Petersen, M.W., and Gilbertson, L.A. (2008) Plant development inhibitory genes in binary vector backbone improve quality event efficiency in soybean transformation. Transgenic Res. 17, 827–838.PubMedCrossRefGoogle Scholar
  114. 114.
    Lu, H.J., Zhou, X.R., Gong, Z.X., and Upadhyaya, N.M. (2001) Generation of selectable marker-free transgenic rice using double right-border (DRB) binary vectors. Aust. J. Plant Physiol. 28, 241–248.Google Scholar
  115. 115.
    Hajdukiewicz, P., Svab, Z., and Maliga, P. (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol. Biol. 25, 989–994.PubMedCrossRefGoogle Scholar
  116. 116.
    Fu, X., Duc, L.T., Fontana, S., Bong, B.B., Tinjuangjun, P., Sudhakar, D., Twyman, R.M., Christou, P., and Kohli, A. (2000) Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgenic Res. 9, 11–19.PubMedCrossRefGoogle Scholar
  117. 117.
    Dale, E., and Ow, D. (1991) Gene transfer with subsequent removal of the selection gene from the host genome. Proc. Natl. Acad. Sci. USA 88, 10558–10562.PubMedCrossRefGoogle Scholar
  118. 118.
    Wang, Y., Chen, B., Hu, Y., Li, J., and Lin, Z. (2005) Inducible excision of selectable marker gene from transgenic plants by the Cre/lox site-specific recombination system. Transgenic Res. 14, 605–614.PubMedCrossRefGoogle Scholar
  119. 119.
    Srivastava, V., and Ow, D.W. (2001) Single-copy primary transformants of maize obtained through the co-introduction of a recombinase-expressing construct. Plant Mol. Biol. 46, 561–566.PubMedCrossRefGoogle Scholar
  120. 120.
    Zuo, J., Niu, Q.-W., Moller, S.G., and Chua, N.-H. (2001) Chemical-regulated, site-specific DNA excision in transgenic plants. Nat. Biotechnol. 19, 157–161.PubMedCrossRefGoogle Scholar
  121. 121.
    Bai, X., Qiuyun, W., and Chu, C. (2008) Excision of a selective marker in transgenic rice using a novel Cre/loxP system controlled by a floral specific promoter. Transgenic Res. 17, 1035–1043.PubMedCrossRefGoogle Scholar
  122. 122.
    McCormac, A.C., Fowler, M.R., Chen, D.F., and Elliott, M.C. (2001) Efficient ­co-­transformation of Nicotiana tabacum by two independent T-DNAs, the effect of T-DNA size and implications for genetic separation. Transgenic Res. 10, 143–155.PubMedCrossRefGoogle Scholar
  123. 123.
    Miller, M., Tagliani, L., Wang, N., Berka, B., Bidney, D., and Zhao, Z.Y. (2002) High-efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2T-DNA binary system. Transgenic Res. 11, 381–396.PubMedCrossRefGoogle Scholar
  124. 124.
    Matthews, P.R., Waterhouse, P.M., Thornton, S., Fieg, S.J., Gubler, F., and Jacobsen, J.V. ( 2001) Marker gene elimination from transgenic barley, using co-transformation with adjacent “twin T-DNAs” on a standard Agrobacterium transformation vector. Mol. Breed. 7, 195–202.CrossRefGoogle Scholar
  125. 125.
    Karimi, M., Inze, D., and Depicker, A. (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7, 193–195.PubMedCrossRefGoogle Scholar
  126. 126.
    Karimi, M., Bjorn, D.M., and Hilson, P. (2005) Modular cloning in plant cells. Trends Plant Sci. 10, 103–105.PubMedCrossRefGoogle Scholar
  127. 127.
    Karimi, M., Depicker, A., and Hilson, P. (2007) Recombinational cloning with plant gateway vectors. Plant Physiol. 145, 1144–1154.PubMedCrossRefGoogle Scholar
  128. 128.
    Chen, Q.-J., Zhou, H.-M., Chen, J., and Wang, X.C. (2006) A gateway-based platform for multigene plant transformation. Plant Mol. Biol. 62, 927–936.PubMedCrossRefGoogle Scholar
  129. 129.
    Helliwell, C., and Waterhouse, P. (2003) Constructs and methods for high-throughput gene silencing in plants. Methods 30, 289–295.PubMedCrossRefGoogle Scholar
  130. 130.
    Daxinger, L., Hunter, B., Sheikh, M., Jauvion, V., Gasciolli, V., Vaucheret, H., Matzke, M., and Furner, I. (2008) Unexpected silencing effects from T-DNA tags in Arabidopsis. Trends Plant Sci. 13, 4–6.PubMedCrossRefGoogle Scholar
  131. 131.
    Heilersig, B.H.J.B., Loonen, A.E.H.M., Wolters, A.-M.A., and Visser, R.G.F. (2006) Presence of an intron in inverted repeat constructs does not necessarily have an effect on efficiency of post-transcriptional gene silencing. Mol. Breed. 17, 307–316.CrossRefGoogle Scholar
  132. 132.
    Earley, K.W., Haag, J.R., Pontes, O., Opper, K., Juehne, T., Song, K., and Pikaard, C.S. (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant J. 45, 616–629.PubMedCrossRefGoogle Scholar
  133. 133.
    Nakagawa, T., Kurose, T., Hino, T., Tanaka, K., Kawamukai, M., Niwa, Y., Toyooka, K., Matsuoka, K., Jinbo, T., and Kimura, T. (2007) Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J. Biosci. Bioeng. 104, 34–41.PubMedCrossRefGoogle Scholar
  134. 134.
    Nakagawa, T., Nakamura, S., Tanaka, K., Kawamukai, M., Suzuki, T., Nakamura, K., Kimura, T., and Ishiguro, S. (2008) Development of R4 gateway binary vectors (R4pGWB) enabling high-throughput promoter swapping for plant research. Biosci. Biotechnol. Biochem. 72, 624–629.PubMedCrossRefGoogle Scholar
  135. 135.
    Curtis, M.D., and Grossniklaus, U. (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. 133, 462–469.PubMedCrossRefGoogle Scholar
  136. 136.
    Tzfira, T., Tian, G.-W., Lacroix, B., Vyas, S., Li, J., Leitner-Dagan, Y., Krichevsky, A., Taylor, T., Vainstein, A., and Citovsky, V. (2005) pSAT vectors: a modular series of plasmids for autofluorescent protein tagging and expression of multiple genes in plants. Plant Mol. Biol. 57, 503–516.PubMedCrossRefGoogle Scholar
  137. 137.
    Zhong, S., Lin, Z., Fray, R.G., and Grierson, D. (2008) Improved plant transformation vectors for fluorescent protein tagging. Transgenic Res. 17, 985–989.PubMedCrossRefGoogle Scholar
  138. 138.
    Martin, K., Kopperud, K., Chakrabarty, R., Banerjee, R., Brooks, R., and Goodin, M.M. (2009) Transient expression in Nicotiana benthamiana fluorescent marker lines provides enhanced definition of protein localization, movement and interactions in planta. Plant J. 59, 150–162.PubMedCrossRefGoogle Scholar
  139. 139.
    Copeland, N.G., Jenkins, N.A., and Court, D.L. (2001) Recombineering: a powerful new tool for mouse functional genomics. Nat. Rev. Genet. 2, 769–779.PubMedCrossRefGoogle Scholar
  140. 140.
    Rozwadowski, K., Yang, W., and Kagale, S. (2008) Homologous recombination-mediated cloning and manipulation of genomic DNA regions using gateway and recombineering systems. BMC Biotechnol. 8, 88.PubMedCrossRefGoogle Scholar
  141. 141.
    Cai, C.Q., Doyon, Y.W., Ainley, M., Miller, J.C., et al. (2009) Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Mol. Biol. 69, 699–709.PubMedCrossRefGoogle Scholar
  142. 142.
    Durai, S., Mani, M., Kandavelou, K., Wu, J., Porteus, M.H., and Chandrasegaran, S. (2005) Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res. 33, 5978–5990.PubMedCrossRefGoogle Scholar
  143. 143.
    Lloyd, A., Plaisier, C.L., Carroll, D., and Drews, G.N. (2005) Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc. Natl. Acad. Sci. USA 102, 2232–2237.PubMedCrossRefGoogle Scholar
  144. 144.
    Ordiz, M.I., Barbas, C.F., and Beachy, R.N. (2002) Regulation of transgene expression in plants with polydactyl zinc finger transcription factors Proc. Natl. Acad. Sci. USA 99, 13290–13295.PubMedCrossRefGoogle Scholar
  145. 145.
    Szxzepek, M., Brondani, V., Buchd, I., Serrano, L., Segal, D., and Cathomen, T. (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat. Biotechnol. 25, 786–793.CrossRefGoogle Scholar
  146. 146.
    Weichang, Y., Fangpu, H., Gao, Z., Vega, J.M., and Birchler, J.A. (2007) Construction and behavior of engineered minichromosomes in maize. Proc. Natl. Acad. Sci. USA 104, 8924–8929.CrossRefGoogle Scholar
  147. 147.
    Yu, W., Han, F., and Birchler, J.A. (2007) Engineered minichromosomes in plants. Curr. Opin. Biotechnol. 18, 425–431.PubMedCrossRefGoogle Scholar
  148. 148.
    Kato, A., Zheng, Y.Z., Auger, D.L., Phelps-Durr, T., Bauer, M.J., Lamb, J.C., and Birchler, J.A. (2005) Minichromosomes derived from the B chromosome of maize. Cytogenet. Genome. Res. 109, 156–165.PubMedCrossRefGoogle Scholar
  149. 149.
    Veena (2008) Engineering plants for future: tools and options Physiol. Mol. Biol. Plants 14, 131–135.Google Scholar
  150. 150.
    Vain, P. (2005) Plant transgenic science knowledge. Nat. Biotechnol. 23, 1348–1349.PubMedCrossRefGoogle Scholar
  151. 151.
    Chapotin, S.M., and Wolt, J.D. (2007) Genetically modified crops for the bioeconomy: meeting public and regulatory expectations. Transgenic Res. 16, 675–688.PubMedCrossRefGoogle Scholar
  152. 152.
    Kim, E.H., Suh, S.C., Park, B.S., Shin, K.S., Kweon, S.J., Han, E.J., Park, S.-H., Kim, Y.-S., and Kim, J.-K. (2009) Chloroplast-targeted expression of synthetic cry1Ac in transgenic rice as an alternative strategy for increased pest protection. Planta 230, 397–405.PubMedCrossRefGoogle Scholar
  153. 153.
    Kim, T.-G., Baek, M.-Y., Lee, E.-K., Kwon, T.-H., and Yang, M.-S. (2008) Expression of human growth hormone in transgenic rice cell suspension culture. Plant Cell Rep. 27, 885–891.PubMedCrossRefGoogle Scholar
  154. 154.
    De Padua, V.L.M., Ferreira, R.P., Meneses, L., Uchoa, L., Marcia, M.-P., and Mansur, E. (2001) Transformation of Brazilian elite Indica-Type Rice (Oryza Sativa L.) by electroporation of shoot apex explants. Plant Mol. Biol. Rep. 19, 55–64.CrossRefGoogle Scholar
  155. 155.
    Cho, M.-J., Choi, H.W., Okamoto, D., Zhang, S., and Lemaux, P.G. (2003) Expression of green fluorescent protein and its inheritance in transgenic oat plants generated from shoot meristematic cultures. Plant Cell Rep. 21, 467–474.PubMedGoogle Scholar
  156. 156.
    Um, M.K., Park, T.I., Kim, Y.J., Seo, H.Y., Kim J.G., Kwon, S.Y., Kwak, S.-S., Yun, D.-J., and Yun, S.J. (2007) Particle bombardment mediated transformation of barley with an Arabidopsis NDPK2 cDNA. Plant Biotechnol. Rep. 1, 71–77.CrossRefGoogle Scholar
  157. 157.
    Manickavasagam, M., Ganapathi, A., Anbazhagan, V.R., Sudhakar, B., Selvaraj, N., Vasudevan, A., and Kasthurirengan, S. (2004) Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids) using axillary buds. Plant Cell Rep. 23, 134–143.PubMedCrossRefGoogle Scholar
  158. 158.
    Seema, G., Pande, H.P., Lal, J., and Madan, V.K. (2001) Plantlet regeneration of sugarcane varieties and transient GUS expression in calli by electroporation. Sugar Tech. 3, 27–33.CrossRefGoogle Scholar
  159. 159.
    Gurel, S., Gurel, E., Kaur, R., Wong, J., Meng, L., Tan, H.-Q., and Lemaux P.G. (2009) Efficient, reproducible Agrobacterium-mediated transformation of sorghum using heat treatment of immature embryos. Plant Cell Rep. 28, 429–444.PubMedCrossRefGoogle Scholar
  160. 160.
    Wu, H., Doherty, A., and Jones, H.D. (2008) Efficient and rapid Agrobacterium-mediated genetic transformation of durum wheat (Triticum turgidum L. var. durum) using additional virulence genes. Transgenic Res. 17, 425–436.PubMedCrossRefGoogle Scholar
  161. 161.
    Buck, S.D., Podevin, N., Nolf, J., Jacobs, A., and Depicker, A. (2009) The T-DNA inte­gration pattern in Arabidopsis transformants is highly determined by the transformed tar­get cell. Plant J. 60, 134–145 (DOI: 10.1111/j.1365-313X.2009.03942).Google Scholar
  162. 162.
    Ueki, S., Lacroix, B., Krichevsky, A., Lazarowitz, S.G., and Citovsky, V. (2009) Functional transient genetic transformation of Arabidopsis leaves by biolistic bombardment. Nat. Prot. 4, 71–77.CrossRefGoogle Scholar
  163. 163.
    Anuradha, T.S., Jami, S.K., Datla R.S., and Kirti, P.B. (2006) Genetic transformation of peanut (Arachis hypogaea L.) using cotyledonary node as explant and a promoterless gus::nptII fusion gene based vector. J. Biosci. 31, 235–246.PubMedCrossRefGoogle Scholar
  164. 164.
    Athmaram, T.N., Bali, G., and Devaiah, K.M. (2006) Integration and expression of Bluetongue VP2 gene in somatic embryos of peanut through particle bombardment method. Vaccine 24, 2994–3000.PubMedCrossRefGoogle Scholar
  165. 165.
    De Paadua, V.L.M., Pestana, M.C., Margis-Pinheiro, M., De Oliviera, D.E., and Mansur, E. (2000) Electroporation of intact embryonic leaflets of peanut: gene transfer and stimulation of regeneration capacity. In Vitro Cell Dev. Biol. Plant 36, 374–378.Google Scholar
  166. 166.
    Liu, C.-W., Lin, C.-C., Yiu, J.-C., Chen, J.J.W., and Tseng, M.-J. (2008) Expression of a Bacillus thuringiensis toxin (cry1Ab) gene in cabbage (Brassica oleracea L. var. capitata L.) chloroplasts confers high insecticidal eYcacy against Plutella xylostella. Theor. Appl. Genet. 117, 75–88.PubMedCrossRefGoogle Scholar
  167. 167.
    Satyavathi, V.V., Prasad, V., Khandelwal, A., Shaila, M.S., and Lakshmi Sita, G. (2003) Expression of hemagglutinin protein of Rinderpest virus in transgenic pigeon pea [Cajanus cajan (L.) Millsp.] plants. Plant Cell Rep. 21, 651–658.PubMedGoogle Scholar
  168. 168.
    Spokevicius, A.V., Beveren, K.V., Leitch, M.A., and Bossinger, G. (2005) Agrobacterium-mediated in vitro transformation of wood-producing stem segments in eucalypts. Plant Cell Rep. 23, 617–624.PubMedCrossRefGoogle Scholar
  169. 169.
    Zeng, P., Vadnais, D., Zhang, Z., and Polacco, J. (2004) Refined glufosinate selection in Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merr.]. Plant Cell Rep. 22, 478–482.PubMedCrossRefGoogle Scholar
  170. 170.
    Tougou, M., Yamagishi, N., Furutani, N., Kaku, K., Shimizu, T., Takahata, Y., Sakai, J.-I., Kanematsu, S., and Hidaka, S. (2009) The application of the mutated acetolactate synthase gene from rice as the selectable marker gene in the production of transgenic soybeans. Plant Cell Rep. 28, 769–776.PubMedCrossRefGoogle Scholar
  171. 171.
    Gao, X.R., Wang, G.K., Su, Q., Wang, Y., and An, L.J. (2007) Phytase expression in transgenic soybeans: stable transformation with a vector-less construct. Biotechnol. Lett. 29, 1781–1787.PubMedCrossRefGoogle Scholar
  172. 172.
    Asad, S., Mukhtar, Z., Nazir, F., Hashmi, J.A., Mansoor, S., Zafar, Y., and Arshad, M. (2008) Silicon carbide whisker-mediated embryogenic callus transformation of cotton (Gossypium hirsutum L.) and regeneration of salt tolerant plants. Mol. Biotechnol. 40, 161–169.PubMedCrossRefGoogle Scholar
  173. 173.
    Li, H., Flachowsky, H., Fischer, T.C., Hanke, M.-V., Forkmann, G., Treutter, D., Schwab, W., Vmann, T.H., and Szankowski, I. (2007) Maize Lc transcription factor enhances biosynthesis of anthocyanins, distinct proanthocyanidins and phenylpropanoids in apple (Malus domestica Borkh.). Planta 226, 1243–1254.PubMedCrossRefGoogle Scholar
  174. 174.
    Charity, J.A., Holland, L., Grace, L.J., and Walter, C. (2005) Consistent and stable expression of the nptII, uidA and bar genes in transgenic Pinus radiata after Agrobacterium tumefaciens-mediated transformation using nurse cultures. Plant Cell Rep. 23, 606–616.PubMedCrossRefGoogle Scholar
  175. 175.
    DeBlock, M., De Brower, D., and Tenning P. (1989) Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants. Plant Physiol. 91, 694–701.CrossRefGoogle Scholar
  176. 176.
    Daniell, H., Muthukumar, B., and Lee, S.B. (2001) Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection. Curr. Genet. 39, 109–116.PubMedCrossRefGoogle Scholar
  177. 177.
    Freyssinet, G., Pelissier, B., Freyssinet, M., and Delon, R. (1996) Crops resistant to oxynils: from the laboratory to the market. Field Crops Res. 45, 125–133.CrossRefGoogle Scholar
  178. 178.
    DeBlock, M., Herrera-Estrella, L., Van Montagu, M., Schell, J., and Zambryski, P. (1984) Expression of foreign genes in regenerated plants and in their progeny. EMBO J. 3, 1681–1689.Google Scholar
  179. 179.
    Irdani, T., Bogani, P., Mengoni, A., Mastromei, G., and Buiatti, M. (1998) Construction of a new vector conferring methotrexate resistance in Nicotiana tabacum plants. Plant Mol. Biol. 37, 1079–1084.PubMedCrossRefGoogle Scholar
  180. 180.
    Howe, A.R., Gasser, C.S., Brown, S.M., Padgette, S.R., Hart, J., Parker, G.B., Fromm, M.E., and Armstrong, C.L. (2002) Glyphosate as a selective agent for the production of fertile transgenic maize (Zea mays L.) plants. Mol. Breed. 10, 153–164.CrossRefGoogle Scholar
  181. 181.
    Barry, G., Kishore, G., Padgette, S., Talor, M., Kolacz, K., Weldon, M., Re, D., Eichholtz, D., Fincher, K., and Hallas, L. (1992) Inhibitors of amino acid biosynthesis: strategies for imparting glyphosate tolerance to plants. In: Singh, B.K., Flores, H.E., Shannon, J.C. (Eds.), Biosynthesis and Molecular Regulation of Amino Acids in Plants. American Society of Plant Physiology, Rockville, MD, pp. 139–145.Google Scholar
  182. 182.
    Waldron, C., Murphy, E.B., Roberts, J.L., Gustafson, G.D., Armour, S.L., and Malcolm, S.K. (1985) Resistance to hygromycin B. Plant Mol. Biol. 5, 103–108.CrossRefGoogle Scholar
  183. 183.
    Joersbo, M., Donaldson, I., Kreiberg, J., Petersen, S.G., and Brunstedt, J. (1998) Analysis of mannose selection used for transformation of sugar beet. Mol. Breed. 4, 111–117.CrossRefGoogle Scholar
  184. 184.
    Fraley, R.T., Rogers, S.G., Horsch, R.B., Sanders, P.R., Flick, J.S., Adams, S.P., Bittner, M.L., Brand, L.A., Fink, C.L., Fry, J.S., Gallupi, G.R., Goldberg, S.B., Hoffman, N.L., and Woo, S.C. (1983) Expression of bacterial genes in plant cells. Proc. Natl. Acad. Sci. USA 80, 4803–4807.PubMedCrossRefGoogle Scholar
  185. 185.
    Haldrup, A., Petersen, S.G., and Okkels, F.T. (1998) Positive selection: a plant selection principle based on xylose isomerase, an enzyme used in the food industry. Plant Cell Rep. 18, 76–81.CrossRefGoogle Scholar
  186. 186.
    Jefferson, R.A. (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5, 387–404.CrossRefGoogle Scholar
  187. 187.
    Ahlandsberg, S., Sathish, P., Sun, C., and Jansson, C. (1999) Green fluorescent protein as a reporter system in the transformation of barley cultivars. Physiol. Plant. 107, 194–200.CrossRefGoogle Scholar
  188. 188.
    Helmer, G., Casadaban, M., Bevan, M., Kayes, L., and Chilton, M.-L. (1984) A new chimeric gene as a marker for plant transformation: the expression of Escherichia coli β-galactosidase in sunflower and tobacco cells. Biotechnology 2, 520–527.CrossRefGoogle Scholar
  189. 189.
    Ow, D.W., Wood, K.V., DeLuca, M., De Wet, J.R., Helinski, D.R., and Howell, S.H. (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234, 856–859.PubMedCrossRefGoogle Scholar
  190. 190.
    Simmonds, J., Cass, L., Routly, E., Hubbard, K., Donaldson, P., Bancroft, B., Davidson, A., Hubbard, S., and Simmonds, D. (2004) Oxalate oxidase: a novel reporter gene for monocot and dicot transformations. Mol. Breed. 13, 79–91.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Division of Plant SciencesUniversity of MissouriColumbiaUSA

Personalised recommendations