Advertisement

The Cytometric Future: It Ain’t Necessarily Flow!

  • Howard M. Shapiro
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 699)

Abstract

Initial approaches to cytometry for classifying and characterizing cells were based on microscopy; it was necessary to collect relatively high-resolution images of cells because only a few specific reagents usable for cell identification were available. Although flow cytometry, now the dominant cytometric technology, typically utilizes lenses similar to microscope lenses for light collection, improved, more quantitative reagents allow the necessary information to be acquired in the form of whole-cell measurements of the intensities of light transmission, scattering, and/or fluorescence.

Much of the cost and complexity of both automated microscopes and flow cytometers arises from the necessity for them to measure one cell at a time. Recent developments in digital camera technology now offer an alternative in which one or more low-magnification, low-resolution images are made of a wide field containing many cells, using inexpensive light-emitting diodes (LEDs) for illumination. Minimalist widefield imaging cytometers can provide a smaller, less complex, and substantially less expensive alternative to flow cytometry, critical in systems intended for in resource-poor areas. Minimalism is, likewise, a good philosophy in developing instrumentation and methodology for both clinical and large-scale research use; it simplifies quality assurance and compliance with regulatory requirements, as well as reduces capital outlays, material costs, and personnel training requirements. Also, importantly, it yields “greener” technology.

Key words

Minimalist cytometry Widefield fluorescence imaging Light-emitting diodes Digital cameras Flow cytometry 

References

  1. 1.
    Gucker, F. T., Jr., O’Konski, C. T., Pickard, H. B., and Pitts, J. N., Jr. (1947) A photoelectronic counter for colloidal particles. J. Am. Chem. Soc. 69, 2422–2431.CrossRefGoogle Scholar
  2. 2.
    Shapiro, H. M. (2003) Practical Flow Cytometry, 4th edn. John Wiley & Sons, Hoboken, NJ, pp. 1–681. A printable, searchable copy in pdf format can be downloaded free of charge from http://coulterflow.com/bciflow/research01.php.
  3. 3.
    Shapiro, H. M. (2004) Scanning laser cytometry, in Current Protocols in Cytometry (Robinson, J. P., ed.), John Wiley & Sons, Hoboken, NJ, Unit 2.10., pp. 2.10.1–2.10.12.Google Scholar
  4. 4.
    Tibbe, A. G. J., de Grooth, B. G., Greve, J., Dolan, G. J., Rao, C., and Terstappen, L. W. M. M. (2002) Cell analysis system based on compact disk technology. Cytometry 47, 173–182.CrossRefGoogle Scholar
  5. 5.
    Varga, V. S., Bocsi, J., Sipos, F., Csendes, G., Tulassay, Z., and Molnár, B. (2004) Scanning fluorescent microscopy is an alternative for quantitative fluorescent cell analysis. Cytometry 60A, 53–62.CrossRefGoogle Scholar
  6. 6.
    Model, M. A. and Burkhardt, J. K. (2001) A standard for calibration and shading correction of a fluorescence microscope. Cytometry 44, 309–316.CrossRefGoogle Scholar
  7. 7.
    Shapiro, H. M. (1977) Fluorescent dyes for differential counts by flow cytometry: does histochemistry tell us much more than cell geometry? J. Histochem. Cytochem. 25, 976–989.CrossRefGoogle Scholar
  8. 8.
    Shapiro, H. M. (1983) Building and Using Flow Cytometers: The Cytomutt Breeder’s and Trainer’s Manual. Howard M. Shapiro, M.D., P.C., West Newton, MA.Google Scholar
  9. 9.
    Shapiro, H. M., Feinstein, D. M., Kirsch, A. S., and Christenson, L. (1983) Multistation multiparameter flow cytometry: some influences of instrumental factors on system performance. Cytometry 4, 11–19.CrossRefGoogle Scholar
  10. 10.
    Shapiro, H. M. (1988) Practical Flow Cytometry, 2nd edn. Alan R. Liss, Inc., New York, NY, pp. 211–265.Google Scholar
  11. 11.
    Olson, R. J., Frankel, S. L., Chisholm, S. W., and Shapiro, H. M. (1983) An inexpensive flow cytometer for the analysis of fluorescence signals in phytoplankton: analysis of chlorophyll and DNA distributions. J. Exp. Mar. Biol. Ecol. 68, 129–144.CrossRefGoogle Scholar
  12. 12.
    Shapiro, H. M., Glazer, A. N., Christenson, L., Williams, J. M., and Strom, T. B. (1983) Immunofluorescence measurement in a flow cytometer using low-power helium-neon laser excitation. Cytometry 4, 276–279.CrossRefGoogle Scholar
  13. 13.
    Shapiro, H. M. (1986) The little laser that could: applications of low power lasers in clinical flow cytometry. Ann. N. Y. Acad. Sci. 468, 18–27.CrossRefGoogle Scholar
  14. 14.
    Shapiro, H. M. and Stephens, S. (1986) Flow cytometry of DNA content using oxazine 750 or related laser dyes with 633 nm excitation. Cytometry 7, 107–110.CrossRefGoogle Scholar
  15. 15.
    Shapiro, H. M. and Perlmutter, N. G. (2001) Violet laser diodes as light sources for cytometry. Cytometry 44, 133–136.CrossRefGoogle Scholar
  16. 16.
    Margolick, J. B., Scott, E. R., Chadwick, K. R., Shapiro, H. M., Hetzel, A. D., Smith, S. J., and Vogt, R. F. (1992) Comparison of lymphocyte immunophenotypes obtained simultaneously from two different data acquisition and analysis systems on the same flow cytometer. Cytometry 13, 198–203.CrossRefGoogle Scholar
  17. 17.
    Shapiro, H. M., Perlmutter, N. G., and Stein, P. G. (1998) A flow cytometer designed for fluorescence calibration. Cytometry 33, 280–287.CrossRefGoogle Scholar
  18. 18.
    Shapiro, H. M. and Hercher, M. (1986) Flow cytometers using optical waveguides in place of lenses for specimen illumination and light collection. Cytometry 7, 221–223.CrossRefGoogle Scholar
  19. 19.
    Janossy, G., Jani, I. V., Kahan, M., Barnett, D., Mandy, F., and Shapiro, H. M. (2002) Precise CD4 T-cell counting using red diode laser excitation: for richer, for poorer. Cytometry (Clin. Cytom.) 50, 78–85.CrossRefGoogle Scholar
  20. 20.
    Janossy, G. and Shapiro, H. (2008) Overview: simplified cytometry for routine monitoring of infectious diseases. Cytometry B Clin. Cytom. 74 Suppl 1, S6–S10.Google Scholar
  21. 21.
    Shapiro, H. M. and Perlmutter, N. G. (2006) Personal cytometers – slow flow or no flow? Cytometry 69A, 620–630.CrossRefGoogle Scholar
  22. 22.
    Masuko, M., Hosoi, S., and Hayakawa, T. (1991) A novel method for detection and counting of single bacteria in a wide field using an ultra-high-sensitivity TV camera without a microscope. FEMS Microbiol. Lett. 65, 287–290.CrossRefGoogle Scholar
  23. 23.
    Masuko, M., Hosoi, S., and Hayakawa, T. (1991) Rapid detection and counting of single bacteria in a wide field using a photon-counting TV camera. FEMS Microbiol. Lett. 67, 231–238.Google Scholar
  24. 24.
    Wittrup, K. D., Westerman, R. J., and Desai, R. (1994) Fluorescence array detector for large-field quantitative fluorescence cytometry. Cytometry 16, 206–213.CrossRefGoogle Scholar
  25. 25.
    Yasui, T. and Yoda, K. (1997) Imaging of Lactobacillus brevis single cells and microcolonies without a microscope by an ultrasensitive chemiluminescent enzyme immunoassay with a photon-counting 17elevisión camera. Appl. Environ. Microbiol. 63, 4528–4533.Google Scholar
  26. 26.
    Olson, R. J., Chekalyuk, A. M., and Sosik, H. M. (1996) Phytoplankton photosynthetic characteristics from fluorescence induction assays of individual cells. Limnol. Oceanogr. 41, 1253–1263.CrossRefGoogle Scholar
  27. 27.
    Mazzini, G., Ferrari, C., Baraldo, N., Mazzini, M., and Angelini, M. (2005) Improvements in fluorescence microscopy allowed by high power light emitting diodes, in Current Issues on Multidisciplinary Microscopy Research and Education, Vol 2 (Méndez-Vilas, A. and Labajos-Broncano, L., eds.), FORMATEX, Badajoz, Spain, pp. 181–188. (http://www.formatex.org/micro2003/papers/181-188.pdf).Google Scholar
  28. 28.
    Shapiro, H. M. and Perlmutter, N. G. (2008) Killer applications: toward affordable rapid cell-based diagnostics for malaria and tuberculosis. Cytometry B Clin. Cytom. 74 Suppl 1, S152–S164.Google Scholar
  29. 29.
    Naivar, M. A., Wilder, M. E., Habbersett, R. C., Woods, T. A., Sebba, D. S., Nolan, J. P., and Graves, S. W. (2009) Development of small and inexpensive digital data acquisition systems using a microcontroller-based approach. Cytometry A 75, 979–989.Google Scholar
  30. 30.
    Ligler, F. S. and Kim, J. S. (eds.) (2010) The Microflow Cytometer. Pan Stanford Publishing Pte. Ltd., Singapore. ISBN-13 978-981-4267-41-0, ISBN-10 981-4267-41-4.Google Scholar
  31. 31.
    Tanner, S. D., Bandura, D. R., Ornatsky, O., Baranov, V. I., Nitz, M., and Winnik, M. A. (2008) Flow cytometer with mass spectrometer detection for massively multiplexed single-cell biomarker assay. Pure Appl. Chem. 80, 2627–2641.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Howard M. Shapiro
    • 1
  1. 1.The Center for Microbial CytometryWest NewtonUSA

Personalised recommendations