The Evolution of Protein Interaction Networks

  • Andreas Schüler
  • Erich Bornberg-Bauer
Part of the Methods in Molecular Biology book series (MIMB, volume 696)


The availability of high-throughput methods to detect protein interactions made construction of comprehensive protein interaction networks for several important model organisms possible. Many studies have since focused on uncovering the structural principles of these networks and relating these structures to biological processes. On a global scale, there are striking similarities in the structure of different protein interaction networks, even when distantly related species, such as the yeast Saccharomyces cerevisiae and the fruit fly Drosophila melanogaster, are compared. However, there is also considerable variance in network structures caused by the gain and loss of genes and mutations which alter the interaction behavior of the encoded proteins. Here, we focus on the current state of knowledge on the structure of protein interaction networks and the evolutionary processes that shaped these structures.


Protein Interaction Cluster Coefficient Interaction Partner Protein Interaction Network Binding Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Monod J (1968) On symmmetry and function in biological systems. Nobel symposium 11, Symmetry and Function of Biological Systems at the Macromolecular Level. 1527Google Scholar
  2. 2.
    Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:C47–C52CrossRefPubMedGoogle Scholar
  3. 3.
    Barabási AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113CrossRefPubMedGoogle Scholar
  4. 4.
    Jeong H, Mason SP, Barabási AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411:41–42CrossRefPubMedGoogle Scholar
  5. 5.
    Fry DC (2006) Protein-protein interactions as targets for small molecule drug discovery. Biopolymers 84:535–552CrossRefPubMedGoogle Scholar
  6. 6.
    Kiemer L, Cesareni G (2007) Comparative interactomics: comparing apples and pears? Trends Biotechnol 25:448–454CrossRefPubMedGoogle Scholar
  7. 7.
    Chothia C, Janin J (1975) Principles of protein-protein recognition. Nature 256:705–708CrossRefPubMedGoogle Scholar
  8. 8.
    Larsen TA, Olson AJ, Goodsell DS (1998) Morphology of protein-protein interfaces. Structure 6:421–427CrossRefPubMedGoogle Scholar
  9. 9.
    Nooren IMA, Thornton JM (2003) Diversity of protein-protein interactions. EMBO J 22:3486–3492CrossRefPubMedGoogle Scholar
  10. 10.
    Pawson T (2003) Organization of cell-regulatory systems through modular-protein-interaction domains. Philos Transact A Math Phys Eng Sci 361:1251–1262CrossRefPubMedGoogle Scholar
  11. 11.
    Nooren IMA, Thornton JM (2003) Structural characterisation and functional significance of transient protein-protein interactions. J Mol Biol 325:991–1018CrossRefPubMedGoogle Scholar
  12. 12.
    Teichmann SA (2002) The constraints protein-protein interactions place on sequence divergence. J Mol Biol 324:399–407CrossRefPubMedGoogle Scholar
  13. 13.
    Mintseris J, Weng Z (2005) Structure, function, and evolution of transient and obligate protein-protein interactions. Proc Natl Acad Sci USA 102:10930–10935CrossRefPubMedGoogle Scholar
  14. 14.
    Doolittle RF (1995) The multiplicity of domains in proteins. Annu Rev Biochem 64:287–314CrossRefPubMedGoogle Scholar
  15. 15.
    Moore AD, Björklund AK, Ekman D et al (2008) Arrangements in the modular evolution of proteins. Trends Biochem Sci 33:444–451CrossRefPubMedGoogle Scholar
  16. 16.
    Kummerfeld SK, Teichmann SA (2005) Relative rates of gene fusion and fission in multi-domain proteins. Trends Genet 21:25–30CrossRefPubMedGoogle Scholar
  17. 17.
    Finn RD, Marshall M, Bateman A (2005) iPfam: visualization of protein-protein interactions in PDB at domain and amino acid resolutions. Bioinformatics 21:410–412CrossRefPubMedGoogle Scholar
  18. 18.
    Stein A, Russell RB, Aloy P (2005) 3did: interacting protein domains of known three-dimensional structure. Nucleic Acids Res 33:D413–D417CrossRefPubMedGoogle Scholar
  19. 19.
    Schuster-Böckler B, Bateman A (2007) Reuse of structural domain-domain interactions in protein networks. BMC Bioinform 8:259CrossRefGoogle Scholar
  20. 20.
    Koonin EV, Wolf YI, Karev GP (2002) The structure of the protein universe and genome evolution. Nature 420:218–223CrossRefPubMedGoogle Scholar
  21. 21.
    Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921CrossRefPubMedGoogle Scholar
  22. 22.
    Weiner J, Moore AD, Bornberg-Bauer E (2008) Just how versatile are domains? BMC Evol Biol 8:285CrossRefPubMedGoogle Scholar
  23. 23.
    Basu MK, Carmel L, Rogozin IB et al (2008) Evolution of protein domain promiscuity in eukaryotes. Genome Res 18:449–461CrossRefPubMedGoogle Scholar
  24. 24.
    Tuncbag N, Kar G, Keskin O et al (2009) A survey of available tools and web servers for analysis of protein-protein interactions and interfaces. Brief Bioinform 10:217–232CrossRefPubMedGoogle Scholar
  25. 25.
    Young KH (1998) Yeast two-hybrid: so many interactions, (in) so little time. Biol Reprod 58:302–311CrossRefPubMedGoogle Scholar
  26. 26.
    Uetz P, Giot L, Cagney G et al (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623–627CrossRefPubMedGoogle Scholar
  27. 27.
    Ito T, Chiba T, Ozawa R et al (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci 98:4569–4574CrossRefPubMedGoogle Scholar
  28. 28.
    Arifuzzaman M, Maeda M, Itoh A et al (2006) Large-scale identification of protein-protein interaction of Escherichia coli K-12. Genome Res 16:686–691CrossRefPubMedGoogle Scholar
  29. 29.
    Rain JC, Selig L, Reuse HD et al (2001) The protein-protein interaction map of Helicobacter pylori. Nature 409:211–215CrossRefPubMedGoogle Scholar
  30. 30.
    Giot L, Bader JS, Brouwer C et al (2003) A protein interaction map of Drosophila melanogaster. Science 302:1727–1736CrossRefPubMedGoogle Scholar
  31. 31.
    Li S, Armstrong CM, Bertin N et al (2004) A map of the interactome network of the metazoan C. elegans. Science 303:540–543CrossRefPubMedGoogle Scholar
  32. 32.
    LaCount DJ, Vignali M, Chettier R et al (2005) A protein interaction network of the malaria parasite Plasmodium falciparum. Nature 438:103–107CrossRefPubMedGoogle Scholar
  33. 33.
    Parrish JR, Yu J, Liu G et al (2007) A proteome-wide protein interaction map for Campylobacter jejuni. Genome Biol 8:R130CrossRefPubMedGoogle Scholar
  34. 34.
    Stelzl U, Worm U, Lalowski M et al (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122:957–968CrossRefPubMedGoogle Scholar
  35. 35.
    Bork P, Jensen LJ, von Mering C et al (2004) Protein interaction networks from yeast to human. Curr Opin Struct Biol 14:292–299CrossRefPubMedGoogle Scholar
  36. 36.
    Deane CM, Salwiński Ł, Xenarios I et al (2002) Protein interactions: two methods for assessment of the reliability of high throughput observations. Mol Cell Proteomics 1:349–356CrossRefPubMedGoogle Scholar
  37. 37.
    Hart GT, Ramani AK, Marcotte EM (2006) How complete are current yeast and human protein-interaction networks? Genome Biol 7:120CrossRefPubMedGoogle Scholar
  38. 38.
    Yu H, Braun P, Yildirim MA et al (2008) High-quality binary protein interaction map of the yeast interactome network. Science 322:104–110CrossRefPubMedGoogle Scholar
  39. 39.
    Yook S, Oltvai ZN, Barabási A (2004) Functional and topological characterization of protein interaction networks. Proteomics 4:928–942CrossRefPubMedGoogle Scholar
  40. 40.
    Han JJ, Dupuy D, Bertin N et al (2005) Effect of sampling on topology predictions of protein-protein interaction networks. Nat Biotechnol 23:839–844CrossRefPubMedGoogle Scholar
  41. 41.
    Han JJ, Bertin N, Hao T et al (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430:88–93CrossRefPubMedGoogle Scholar
  42. 42.
    Jin G, Zhang S, Zhang X et al (2007) Hubs with network motifs organize modularity dynamically in the protein-protein interaction network of yeast. PLoS ONE 2:e1207CrossRefPubMedGoogle Scholar
  43. 43.
    Ispolatov I, Yuryev A, Mazo I et al (2005) Binding properties and evolution of homodimers in protein-protein interaction networks. Nucleic Acids Res 33:3629–3635CrossRefPubMedGoogle Scholar
  44. 44.
    Lukatsky DB, Shakhnovich BE, Mintseris J et al (2007) Structural similarity enhances interaction propensity of proteins. J Mol Biol 365:1596–1606CrossRefPubMedGoogle Scholar
  45. 45.
    Pastor-Satorras R, Smith E, Solé RV (2003) Evolving protein interaction networks through gene duplication. J Theor Biol 222:199–210CrossRefPubMedGoogle Scholar
  46. 46.
    Evlampiev K, Isambert H (2008) Conservation and topology of protein interaction networks under duplication-divergence evolution. Proc Natl Acad Sci USA 105:9863–9868CrossRefPubMedGoogle Scholar
  47. 47.
    Kashtan N, Alon U (2005) Spontaneous evolution of modularity and network motifs. Proc Natl Acad Sci USA 102:13773–13778CrossRefPubMedGoogle Scholar
  48. 48.
    Pagel M, Meade A, Scott D (2007) Assembly rules for protein networks derived from phylogenetic-statistical analysis of whole genomes. BMC Evol Biol 7(Suppl 1):S16CrossRefPubMedGoogle Scholar
  49. 49.
    Pereira-Leal JB, Teichmann SA (2005) Novel specificities emerge by stepwise duplication of functional modules. Genome Res 15:552–559CrossRefPubMedGoogle Scholar
  50. 50.
    Beltrao P, Serrano L (2007) Specificity and evolvability in eukaryotic protein interaction networks. PLoS Comput Biol 3:e25CrossRefPubMedGoogle Scholar
  51. 51.
    Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155CrossRefPubMedGoogle Scholar
  52. 52.
    Lynch M, O’Hely M, Walsh B et al (2001) The probability of preservation of a newly arisen gene duplicate. Genetics 159:1789–1804PubMedGoogle Scholar
  53. 53.
    Berg J, Lässig M, Wagner A (2004) Structure and evolution of protein interaction networks: a statistical model for link dynamics and gene duplications. BMC Evol Biol 4:51CrossRefPubMedGoogle Scholar
  54. 54.
    Gamsjaeger R, Liew CK, Loughlin FE et al (2007) Sticky fingers: zinc-fingers as protein-recognition motifs. Trends Biochem Sci 32:63–70CrossRefPubMedGoogle Scholar
  55. 55.
    Mészáros B, Simon I, Dosztányi Z (2009) Prediction of protein binding regions in disordered proteins. PLoS Comput Biol 5:e1000376CrossRefPubMedGoogle Scholar
  56. 56.
    Neduva V, Russell RB (2005) Linear motifs: evolutionary interaction switches. FEBS Lett 579:3342–3345CrossRefPubMedGoogle Scholar
  57. 57.
    Fraser HB, Wall DP, Hirsh AE (2003) A simple dependence between protein evolution rate and the number of protein-protein interactions. BMC Evol Biol 3:11CrossRefPubMedGoogle Scholar
  58. 58.
    Fraser HB, Hirsh AE (2004) Evolutionary rate depends on number of protein-protein interactions independently of gene expression level. BMC Evol Biol 4:13CrossRefPubMedGoogle Scholar
  59. 59.
    Jordan IK, Wolf YI, Koonin EV (2003) No simple dependence between protein evolution rate and the number of protein-protein interactions: only the most prolific interactors tend to evolve slowly. BMC Evol Biol 3:1CrossRefPubMedGoogle Scholar
  60. 60.
    Bloom JD, Adami C (2003) Apparent dependence of protein evolutionary rate on number of interactions is linked to biases in protein-protein interactions data sets. BMC Evol Biol 3:21CrossRefPubMedGoogle Scholar
  61. 61.
    Kim PM, Lu LJ, Xia Y et al (2006) Relating three-dimensional structures to protein networks provides evolutionary insights. Science 314:1938–1941CrossRefPubMedGoogle Scholar
  62. 62.
    Guelzim N, Bottani S, Bourgine P et al (2002) Topological and causal structure of the yeast transcriptional regulatory network. Nat Genet 31:60–63CrossRefPubMedGoogle Scholar
  63. 63.
    Wuchty S, Oltvai ZN, Barabási AL (2003) Evolutionary conservation of motif constituents in the yeast protein interaction network. Nat Genet 35:176–179CrossRefPubMedGoogle Scholar
  64. 64.
    Amoutzias GD, Robertson DL, Oliver SG et al (2004) Convergent evolution of gene networks by single-gene duplications in higher eukaryotes. EMBO Rep 5:274–279CrossRefPubMedGoogle Scholar
  65. 65.
    Deeds EJ, Ashenberg O, Gerardin J et al (2007) Robust protein protein interactions in crowded cellular environments. Proc Natl Acad Sci USA 104:14952–14957CrossRefPubMedGoogle Scholar
  66. 66.
    Noguchi CT, Schechter AN et al (1985) Sickle hemoglobin polymerization in solution and in cells. Annu Rev Biophys Chem 14:239–263CrossRefGoogle Scholar
  67. 67.
    Kuriyan J, Eisenberg D (2007) The origin of protein interactions and allostery in colocalization. Nature 450:983–990CrossRefPubMedGoogle Scholar
  68. 68.
    Wang M, Caetano-Anollés G (2009) The evolutionary mechanics of domain organization in proteomes and the rise of modularity in the protein world. Structure 17:66–78CrossRefPubMedGoogle Scholar
  69. 69.
    Bennett MJ, Choe S, Eisenberg D (1994) Domain swapping: entangling alliances between proteins. Proc Natl Acad Sci USA 91:3127–3131CrossRefPubMedGoogle Scholar
  70. 70.
    Bennett MJ, Schlunegger MP, Eisenberg D (1995) 3D domain swapping: a mechanism for oligomer assembly. Protein Sci 4:2455–2468CrossRefPubMedGoogle Scholar
  71. 71.
    Hedges SB (2002) The origin and evolution of model organisms. Nat Rev Genet 3:838–849CrossRefPubMedGoogle Scholar
  72. 72.
    Cesareni G, Ceol A, Gavrila C et al (2005) Comparative interactomics. FEBS Lett 579:1828–1833CrossRefPubMedGoogle Scholar
  73. 73.
    Kelley BP, Sharan R, Karp R et al (2005) Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proc Natl Acad Sci USA 100:11394–11399CrossRefGoogle Scholar
  74. 74.
    Sharan R, Suthram S, Kelley RM et al (2005) Conserved patterns of protein interaction in multiple species. Proc Natl Acad Sci USA 102:1974–1979CrossRefPubMedGoogle Scholar
  75. 75.
    Gerke M, Bornberg-Bauer E, Jiang X et al (2006) Finding common protein interaction patterns across organisms. Evol Bioinform Online 2:45–52Google Scholar
  76. 76.
    Aloy P (2007) Shaping the future of interactome networks. Genome Biol 8:316CrossRefPubMedGoogle Scholar
  77. 77.
    Ideker T, Valencia A (2006) Bioinformatics in the human interactome project. Bioinformatics 22:2973–2974CrossRefPubMedGoogle Scholar
  78. 78.
    Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504CrossRefPubMedGoogle Scholar
  79. 79.
    Hernandez-Toro J, Prieto C, las Rivas JD (2007) APID2NET: unified interactome graphic analyzer. Bioinformatics 23:2495–2497CrossRefPubMedGoogle Scholar
  80. 80.
    Wu J, Vallenius T, Ovaska K et al (2009) Integrated network analysis platform for protein-protein interactions. Nat Methods 6:75–77CrossRefPubMedGoogle Scholar
  81. 81.
    Suthram S, Shlomi T, Ruppin E et al (2006) A direct comparison of protein interaction confidence assignment schemes. BMC Bioinform 7:360CrossRefGoogle Scholar
  82. 82.
    Bader GD, Betel D, Hogue CWV (2003) BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res 31:248–250CrossRefPubMedGoogle Scholar
  83. 83.
    Stark C, Breitkreutz B, Reguly T et al (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34:D535–D539CrossRefPubMedGoogle Scholar
  84. 84.
    Xenarios I, Rice DW, Salwinski L et al (2000) DIP: the database of interacting proteins. Nucleic Acids Res 28:289–291CrossRefPubMedGoogle Scholar
  85. 85.
    Peri S, Navarro JD, Kristiansen TZ et al (2004) Human protein reference database as a discovery resource for proteomics. Nucleic Acids Res 32:D497–D501CrossRefPubMedGoogle Scholar
  86. 86.
    Hermjakob H, Montecchi-Palazzi L, Lewington C et al (2004) IntAct: an open source molecular interaction database. Nucleic Acids Res 32:D452–D455CrossRefPubMedGoogle Scholar
  87. 87.
    Chatr-aryamontri A, Ceol A, Palazzi L et al (2007) MINT: the Molecular INTeraction database. Nucleic Acids Resm 35:D572–D574CrossRefGoogle Scholar
  88. 88.
    Pagel P, Kovac S, Oesterheld M et al (2005) The MIPS mammalian protein-protein interaction database. Bioinformatics 21:832–834CrossRefPubMedGoogle Scholar
  89. 89.
    Raghavachari B, Tasneem A, Przytycka TM et al (2008) DOMINE: a database of protein domain interactions. Nucleic Acids Res 36:D656–D661CrossRefPubMedGoogle Scholar
  90. 90.
    Brown KR, Jurisica I (2007) Unequal evolutionary conservation of human protein interactions in interologous networks. Genome Biol 8:R95CrossRefPubMedGoogle Scholar
  91. 91.
    Keskin O, Nussinov R, Gursoy A (2008) PRISM: protein-protein interaction prediction by structural matching. Methods Mol Biol 484:505–521CrossRefPubMedGoogle Scholar
  92. 92.
    McDowall MD, Scott MS, Barton GJ (2009) PIPs: human protein-protein interaction prediction database. Nucleic Acids Res 37:D651–D656CrossRefPubMedGoogle Scholar
  93. 93.
    Han K, Park B, Kim H et al (2004) HPID: the human protein interaction database. Bioinformatics 20:2466–2470CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Andreas Schüler
    • 1
  • Erich Bornberg-Bauer
    • 1
  1. 1.Bioinformatics Division, School of Biological Sciences, Institute for Evolution and BiodiversityUniversity of MuensterMünsterGermany

Personalised recommendations