Instruments and Methods in Proteomics

  • Caroline May
  • Frederic Brosseron
  • Piotr Chartowski
  • Cornelia Schumbrutzki
  • Bodo Schoenebeck
  • Katrin Marcus
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 696)

Abstract

In the past decade, major developments in instrumentation and methodology have been achieved in proteomics. For proteome investigations of complex biological samples derived from cell cultures, tissues, or whole organisms, several techniques are state of the art. Especially, many improvements have been undertaken to quantify differences in protein expression between samples from, e.g., treated vs. untreated cells and healthy vs. control patients. In this review, we give a brief insight into the main techniques, including gel-based protein separation techniques, and the growing field of mass spectrometry.

References

  1. 1.
    Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, Williams KL (1996) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13:19–50PubMedGoogle Scholar
  2. 2.
    Patterson SD, Aebersold RH (2003) Proteomics: the first decade and beyond. Nat Genet 33(Suppl):311–323PubMedCrossRefGoogle Scholar
  3. 3.
    Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405:837–846PubMedCrossRefGoogle Scholar
  4. 4.
    Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730PubMedGoogle Scholar
  5. 5.
    Anderson NL, Anderson NG (1998) Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 19:1853–1861PubMedCrossRefGoogle Scholar
  6. 6.
    Klose J, Kobalz U (1995) Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis 16:1034–1059PubMedCrossRefGoogle Scholar
  7. 7.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  8. 8.
    Klose J (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26:231–243PubMedGoogle Scholar
  9. 9.
    O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021PubMedGoogle Scholar
  10. 10.
    Bjellqvist B, Ek K, Righetti PG, Gianazza E, Görg A, Westermeier R, Postel W (1982) Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. J Biochem Biophys Methods 6:317–339PubMedCrossRefGoogle Scholar
  11. 11.
    Görg A, Postel W, Gunther S (1988) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 9:531–546PubMedCrossRefGoogle Scholar
  12. 12.
    Luhn S, Berth M, Hecker M, Bernhardt J (2003) Using standard positions and image fusion to create proteome maps from collections of two-dimensional gel electrophoresis images. Proteomics 3:1117–1127PubMedCrossRefGoogle Scholar
  13. 13.
    MacFarlane DE (1989) Two dimensional benzyldimethyl-n-hexadecylammonium chloride – sodium dodecyl sulfate preparative polyacrylamide gel electrophoresis: a high capacity high resolution technique for the purification of proteins from complex mixtures. Anal Biochem 176:457–463PubMedCrossRefGoogle Scholar
  14. 14.
    Eley MH, Burns PC, Kannapell CC, Campbell PS (1979) Cetyltrimethyl-ammonium bromide polyacrylamide gel electrophoresis: estimation of protein subunit molecular weights using cationic detergents. Anal Biochem 92:411–419PubMedCrossRefGoogle Scholar
  15. 15.
    Helling S, Schmitt E, Joppich C, Schulenborg T, Mullner S, Felske-Muller S, Wiebringhaus T, Becker G, Linsenmann G, Sitek B, Lutter P, Meyer HE, Marcus K (2006) 2-D differential membrane proteome analysis of scarce protein samples. Proteomics 6:4506–4513PubMedCrossRefGoogle Scholar
  16. 16.
    Rais I, Karas M, Schägger H (2004) Two-dimensional electrophoresis for the isolation of integral membrane proteins and mass spectrometric identification. Proteomics 4:2567–2571PubMedCrossRefGoogle Scholar
  17. 17.
    Schägger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199:223–231PubMedCrossRefGoogle Scholar
  18. 18.
    Marcus K, Joppich C, May C, Pfeiffer K, Sitek B, Meyer H, Stuehler K (2009) High-resolution 2DE. Methods Mol Biol 519:221–240PubMedCrossRefGoogle Scholar
  19. 19.
    Rabilloud T, Vaezzadeh AR, Potier N, Lelong C, Leize-Wagner E, Chevallet M (2009) Power and limitations of electrophoretic separations in proteomics strategies. Mass Spectrom Rev 28:816–843PubMedCrossRefGoogle Scholar
  20. 20.
    Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077PubMedCrossRefGoogle Scholar
  21. 21.
    Alban A, David SO, Bjorkesten L, Andersson C, Sloge E, Lewis S, Currie I (2003) A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3:36–44PubMedCrossRefGoogle Scholar
  22. 22.
    Sitek B, Luttges J, Marcus K, Kloppel G, Schmiegel W, Meyer HE, Hahn SA, Stuhler K (2005) Application of fluorescence difference gel electrophoresis saturation labelling for the analysis of microdissected precursor lesions of pancreatic ductal adenocarcinoma. Proteomics 5:2665–2679PubMedCrossRefGoogle Scholar
  23. 23.
    Nyman TA (2001) The role of mass spectrometry in proteome studies. Biomol Eng 18:221–227PubMedCrossRefGoogle Scholar
  24. 24.
    Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207PubMedCrossRefGoogle Scholar
  25. 25.
    Steen H, Mann M (2004) The ABC’s (and XYZ’s) of peptide sequencing. Nat Rev Mol Cell Biol 5:699–711PubMedCrossRefGoogle Scholar
  26. 26.
    Wuhrer M, Deelder AM, Hokke CH (2005) Protein glycosylation analysis by liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 825:124–133PubMedCrossRefGoogle Scholar
  27. 27.
    Boersema PJ, Mohammed S, Heck AJ (2009) Phosphopeptide fragmentation and analysis by mass spectrometry, J. Mass Spectrom 44:861–878CrossRefGoogle Scholar
  28. 28.
    Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389:1017–1031PubMedCrossRefGoogle Scholar
  29. 29.
    Urlaub H, Gronborg M, Richter F, Veenstra TD, Müller T, Tribl F, Meyer HE, Marcus K (2008) Common methods in proteomics. In: Nothwang HG, Pfeiffer SE (eds) Proteomics of the nervous system, 1st edn. Weinheim, Wiley-VCHGoogle Scholar
  30. 30.
    Glish GL, Vachet RW (2003) The basics of mass spectrometry in the twenty-first century. Nat Rev Drug Discov 2:140–150PubMedCrossRefGoogle Scholar
  31. 31.
    Mitulovic G, Mechtler K (2006) HPLC techniques for proteomics analysis - a short overview of latest developments. Brief Funct Genomic Proteomic 5:249–260PubMedCrossRefGoogle Scholar
  32. 32.
    Washburn MP, Wolters D, Yates JR III (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247PubMedCrossRefGoogle Scholar
  33. 33.
    Nägele E, Vollmer M, Horth P, Vad C (2004) 2D-LC/MS techniques for the identification of proteins in highly complex mixtures. Expert Rev Proteomics 1:37–46PubMedCrossRefGoogle Scholar
  34. 34.
    Chervet JP, Ursem M, Salzmann JP (1996) Instrumental requirements for nanoscale liqid chromatography. Anal Chem 68:1507–1512CrossRefGoogle Scholar
  35. 35.
    Zaluzec EJ, Gage DA, Watson JT (1995) Matrix-assisted laser desorption ionization mass spectrometry: applications in peptide and protein characterization, Protein Expr Purif 6:109–123PubMedCrossRefGoogle Scholar
  36. 36.
    Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312:212–217PubMedCrossRefGoogle Scholar
  37. 37.
    Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10, 000 daltons. Anal Chem 60:2299–2301PubMedCrossRefGoogle Scholar
  38. 38.
    Nordhoff E, Egelhofer V, Giavalisco P, Eickhoff H, Horn M, Przewieslik T, Theiss D, Schneider U, Lehrach H, Gobom J (2001) Large-gel two-dimensional electrophoresis-matrix assisted laser desorption/ionization-time of flight-mass spectrometry: an analytical challenge for studying complex protein mixtures. Electrophoresis 22:2844–2855PubMedCrossRefGoogle Scholar
  39. 39.
    Stuhler K, Meyer HE (2004) MALDI: more than peptide mass fingerprints. Curr Opin Mol Ther 6:239–248PubMedGoogle Scholar
  40. 40.
    Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71PubMedCrossRefGoogle Scholar
  41. 41.
    Loo JA, Udseth HR, Smith RD (1989) Peptide and protein analysis by electrospray ionization-mass spectrometry and capillary electrophoresis-mass spectrometry. Anal Biochem 179:404–412PubMedCrossRefGoogle Scholar
  42. 42.
    Cech NB, Enke CG (2001) Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom Rev 20:362–387PubMedCrossRefGoogle Scholar
  43. 43.
    Iribarne JV, Thomson BA (1976) On the evaporation of small ions from charged droplets. J Chem Phys 64:2287–2294CrossRefGoogle Scholar
  44. 44.
    Dole M, Dole M, Mack LL, Mack LL, Hines RL, Hines RL, Mobley RC, Mobley RC, Ferguson LD, Ferguson LD, Alice MB, Alice MB (1968) Molecular Beams of Macroions. J Chem Phys 49:2240–2249CrossRefGoogle Scholar
  45. 45.
    Wollnik H (1993) Time-of-flight mass analyzers. Mass Spectrom Rev 12:89–114CrossRefGoogle Scholar
  46. 46.
    Balogh MP (2004) Debating resolution and mass accuracy in mass spectrometry. Spectroscopy 19:34–40Google Scholar
  47. 47.
    Schwartz JC, Senko MW, Syka JE (2002) A two-dimensional quadrupole ion trap mass spectrometer. J Am Soc Mass Spectrom 13:659–669PubMedCrossRefGoogle Scholar
  48. 48.
    March RE (2000) Quadrupole ion mass spectrometry: a view at the turn of the century. Int J Mass Spectrom 200:285–312CrossRefGoogle Scholar
  49. 49.
    Douglas DJ, Frank AJ, Mao D (2005) Linear ion traps in mass spectrometry. Mass Spectrom Rev 24:1–29PubMedCrossRefGoogle Scholar
  50. 50.
    Hager JW (2002) A new linear mass spectromter. Rapid Commun Mass Spectrom 16:512–526CrossRefGoogle Scholar
  51. 51.
    Wilm M, Neubauer G, Mann M (1996) Parent ion scans of unseparated peptide mixtures. Anal Chem 68:527–533PubMedCrossRefGoogle Scholar
  52. 52.
    Steen H, Kuster B, Fernandez M, Pandey A, Mann M (2001) Detection of tyrosine phosphorylated peptides by precursor ion scanning quadrupole TOF mass spectrometry in positive ion mode. Anal Chem 73:1440–1448PubMedCrossRefGoogle Scholar
  53. 53.
    Hunter AP, Games DE (1994) Chromatographic and mass spectrometric methods for the identification of phosphorylation sites in phosphoproteins. Rapid Commun Mass Spectrom 8:559–570PubMedCrossRefGoogle Scholar
  54. 54.
    Schlosser A, Pipkorn R, Bossemeyer D, Lehmann WD (2001) Analysis of protein phosphorylation by a combination of elastase digestion and neutral loss tandem mass spectrometry. Anal Chem 73:170–176PubMedCrossRefGoogle Scholar
  55. 55.
    Yocum AK, Chinnaiyan AM (2009) Current affairs in quantitative targeted proteomics: multiple reaction monitoring-mass spectrometry. Brief Funct Genomic Proteomic 8:145–157PubMedCrossRefGoogle Scholar
  56. 56.
    Busch FV, Paul W (1961) Isotopentrennung mit dem elektrischen. Massenfilter Zeitschrift für Physik 164:581–587CrossRefGoogle Scholar
  57. 57.
    Mikesh LM, Ueberheide B, Chi A, Coon JJ, Syka JE, Shabanowitz J, Hunt DF (2006) The utility of ETD mass spectrometry in proteomic analysis. Biochim Biophys Acta 1764:1811–1822PubMedGoogle Scholar
  58. 58.
    Wang Y, Franzen J (1992) The non-linear resonance QUISTOR Part1: Potential distribution in hyperboloidal QUISTORs. Int J Mass Spectrom Ion Processes 112:167–178CrossRefGoogle Scholar
  59. 59.
    Wang Y, Franzen J, Wanczek KP (2009) The non-linear resonance ion trap. Part 2. A general theoretical analysis. Int J Mass Spectrom Ion Processes 124:125–144CrossRefGoogle Scholar
  60. 60.
    Wang Y, Franzen J (1994) The non-linear ion trap. Part 3. Multipole components in three types of practical ion trap. Int J Mass Spectrom Ion Processes 132:155–172CrossRefGoogle Scholar
  61. 61.
    Franzen J (1993) The non-linear ion trap: Part 4. Mass selcetive instability scan with multipole superposition. Int J Mass Spectrom Ion Processes 125:165–170CrossRefGoogle Scholar
  62. 62.
    Franzen J (1994) The non-linear ion trap. Part 5. Nature of non-linear resonances and resonant ion ejection. Int J Mass Spectrom Ion Processes 130:15–40CrossRefGoogle Scholar
  63. 63.
    Marshall AG, Hendrickson CL, Jackson GS (1998) Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev 17:1–35PubMedCrossRefGoogle Scholar
  64. 64.
    Comisarow MB, Marshall AG (1974) Fourier transform ion cyclotron resonance spectroscopy. Chem Phys Lett 25:282–283CrossRefGoogle Scholar
  65. 65.
    Goodlett DR, Bruce JE, Anderson GA, Rist B, Pasa-Tolic L, Fiehn O, Smith RD, Aebersold R (2000) Protein identification with a single accurate mass of a cysteine-containing peptide and constrained database searches. Anal Chem 72:1112–1118PubMedCrossRefGoogle Scholar
  66. 66.
    Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Graham CR (2005) The Orbitrap: a new mass spectrometer, J. Mass Spectrom 40:430–443CrossRefGoogle Scholar
  67. 67.
    Perry RH, Cooks RG, Noll RJ (2008) Orbitrap mass spectrometry: instrumentation, ion motion and applications. Mass Spectrom Rev 27:661–699PubMedCrossRefGoogle Scholar
  68. 68.
    Scigelova M, Makarov A (2006) Orbitrap mass analyzer–overview and applications in proteomics. Proteomics 6(Suppl 2):16–21PubMedCrossRefGoogle Scholar
  69. 69.
    Aebersold R, Goodlett DR (2001) Mass spectrometry in proteomics. Chem Rev 101:269–295PubMedCrossRefGoogle Scholar
  70. 70.
    Spengler B, Kirsch D, Kaufmann R, Jaeger E (1992) Peptide sequencing by matrix-assisted laser-desorption mass spectrometry. Rapid Commun Mass Spectrom 6:105–108PubMedCrossRefGoogle Scholar
  71. 71.
    de Hoffmann E (1996) Tandem mass spectrometry: a primer. J Mass Spectrom 31:129–137CrossRefGoogle Scholar
  72. 72.
    Steen H, Kuster B, Mann M (2001) Quadrupole time-of-flight versus triple-quadrupole mass spectrometry for the determination of phosphopeptides by precursor ion scanning. J Mass Spectrom 36:782–790PubMedCrossRefGoogle Scholar
  73. 73.
    Aldini G, Regazzoni L, Orioli M, Rimoldi I, Facino RM, Carini M (2008) A tandem MS precursor-ion scan approach to identify variable covalent modification of albumin Cys34: a new tool for studying vascular carbonylation. J Mass Spectrom 43:1470–1481PubMedCrossRefGoogle Scholar
  74. 74.
    Hopfgartner G, Varesio E, Tschappat V, Grivet C, Bourgogne E, Leuthold LA (2004) Triple quadrupole linear ion trap mass spectrometer for the analysis of small molecules and macromolecules. J Mass Spectrom 39:845–855PubMedCrossRefGoogle Scholar
  75. 75.
    Yates JR III, Speicher S, Griffin PR, Hunkapiller T (1993) Peptide mass maps: a highly informative approach to protein identification. Anal Biochem 214:397–408PubMedCrossRefGoogle Scholar
  76. 76.
    Johnson RS, Martin SA, Biemann K, Stults JT, Watson JT (1987) Novel fragmentation process of peptides by collision-induced decomposition in a tandem mass spectrometer: differentiation of leucine and isoleucine. Anal Chem 59:2621–2625PubMedCrossRefGoogle Scholar
  77. 77.
    Chi A, Huttenhower C, Geer LY, Coon JJ, Syka JE, Bai DL, Shabanowitz J, Burke DJ, Troyanskaya OG, Hunt DF (2007) Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc Natl Acad Sci USA 104:2193–2198PubMedCrossRefGoogle Scholar
  78. 78.
    Perdivara I, Petrovich R, Allinquant B, Deterding LJ, Tomer KB, Przybylski M (2009) Elucidation of O-glycosylation structures of the beta-amyloid precursor protein by liquid chromatography-mass spectrometry using electron transfer dissociation and collision induced dissociation. J Proteome Res 8:631–642PubMedCrossRefGoogle Scholar
  79. 79.
    Alley WR Jr, Mechref Y, Novotny MV (2009) Characterization of glycopeptides by combining collision-induced dissociation and electron-transfer dissociation mass spectrometry data. Rapid Commun Mass Spectrom 23:161–170PubMedCrossRefGoogle Scholar
  80. 80.
    Wiesner J, Premsler T, Sickmann A (2008) Application of electron transfer dissociation (ETD) for the analysis of posttranslational modifications. Proteomics 8:4466–4483PubMedCrossRefGoogle Scholar
  81. 81.
    Carr SA, Huddleston MJ, Annan RS (1996) Selective detection and sequencing of phosphopeptides at the femtomole level by mass spectrometry. Anal Biochem 239:180–192PubMedCrossRefGoogle Scholar
  82. 82.
    Huddleston MJ, Bean MF, Carr SA (1993) Collisional Fragmentation of Glycopeptides by Electrospary Ionization LC/MS and LC/MS/MS: Methods for selective detection of glycopeptides in protein digests. Anal Chem 65:877–884PubMedCrossRefGoogle Scholar
  83. 83.
    Annan RS, Carr SA (1997) The essential role of mass spectrometry in characterizing protein structure: mapping posttranslational modifications. J Protein Chem 16:391–402PubMedCrossRefGoogle Scholar
  84. 84.
    Williamson BL, Marchese J, Morrice NA (2006) Automated identification and quantification of protein phosphorylation sites by LC/MS on a hybrid triple quadrupole linear ion trap mass spectrometer. Mol Cell Proteomics 5:337–346PubMedGoogle Scholar
  85. 85.
    Gadgil HS, Bondarenko PV, Treuheit MJ, Ren D (2007) Screening and sequencing of glycated proteins by neutral loss scan LC/MS/MS method. Anal Chem 79:5991–5999PubMedCrossRefGoogle Scholar
  86. 86.
    Langenfeld E, Zanger UM, Jung K, Meyer HE, Marcus K (2009) Mass spectrometry-based absolute quantification of microsomal cytochrome P450 2D6 in human liver. Proteomics 9:2313–2323PubMedCrossRefGoogle Scholar
  87. 87.
    Unwin RD, Griffiths JR, Leverentz MK, Grallert A, Hagan IM, Whetton AD (2005) Multiple reaction monitoring to identify sites of protein phosphorylation with high sensitivity. Mol Cell Proteomics 4:1134–1144PubMedCrossRefGoogle Scholar
  88. 88.
    Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567PubMedCrossRefGoogle Scholar
  89. 89.
    Eng JK, McCormack AL, Yates JR 3rd (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989CrossRefGoogle Scholar
  90. 90.
    Biemann K (1990) Appendix 5. Nomenclature for peptide fragment ions (positive ions). Methods Enzymol 193:886–887PubMedCrossRefGoogle Scholar
  91. 91.
    Zhang W, Chait BT (2000) ProFound: an expert system for protein identification using mass spectrometric peptide mapping information. Anal Chem 72:2482–2489PubMedCrossRefGoogle Scholar
  92. 92.
    Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999PubMedCrossRefGoogle Scholar
  93. 93.
    Schmidt A, Kellermann J, Lottspeich F (2005) A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 5:4–15PubMedCrossRefGoogle Scholar
  94. 94.
    Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169PubMedCrossRefGoogle Scholar
  95. 95.
    Yao X, Freas A, Ramirez J, Demirev PA, Fenselau C (2001) Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal Chem 73:2836–2842PubMedCrossRefGoogle Scholar
  96. 96.
    Staes A, Demol H, Van DJ, Martens L, Vandekerckhove J, Gevaert K (2004) Global differential non-gel proteomics by quantitative and stable labeling of tryptic peptides with oxygen-18. J Proteome Res 3:786–791PubMedCrossRefGoogle Scholar
  97. 97.
    Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386PubMedCrossRefGoogle Scholar
  98. 98.
    Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA 100:6940–6945PubMedCrossRefGoogle Scholar
  99. 99.
    Kito K, Ito T (2008) Mass spectrometry-based approaches toward absolute quantitative proteomics. Curr Genomics 9:263–274PubMedCrossRefGoogle Scholar
  100. 100.
    Julka S, Regnier FE (2005) Recent advancements in differential proteomics based on stable isotope coding. Brief Funct Genomic Proteomic 4:158–177PubMedCrossRefGoogle Scholar
  101. 101.
    Mueller LN, Brusniak MY, Mani DR, Aebersold R (2008) An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data. J Proteome Res 7:51–61PubMedCrossRefGoogle Scholar
  102. 102.
    Shiio Y, Aebersold R (2006) Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry. Nat Protoc 1:139–145PubMedCrossRefGoogle Scholar
  103. 103.
    Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75:1895–1904PubMedCrossRefGoogle Scholar
  104. 104.
    Aggarwal K, Choe LH, Lee KH (2006) Shotgun proteomics using the iTRAQ isobaric tags. Brief Funct Genomic Proteomic 5:112–120PubMedCrossRefGoogle Scholar
  105. 105.
    Bantscheff M, Boesche M, Eberhard D, Matthieson T, Sweetman G, Kuster B (2008) Robust and sensitive iTRAQ quantification on an LTQ Orbitrap mass spectrometer. Mol Cell Proteomics 7:1702–1713PubMedCrossRefGoogle Scholar
  106. 106.
    Ong SE, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1:252–262PubMedCrossRefGoogle Scholar
  107. 107.
    Kruger M, Moser M, Ussar S, Thievessen I, Luber CA, Forner F, Schmidt S, Zanivan S, Fassler R, Mann M (2008) SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134:353–364PubMedCrossRefGoogle Scholar
  108. 108.
    Krijgsveld J, Ketting RF, Mahmoudi T, Johansen J, Rtal-Sanz M, Verrijzer CP, Plasterk RH, Heck AJ (2003) Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nat Biotechnol 21:927–931PubMedCrossRefGoogle Scholar
  109. 109.
    Old WM, Meyer-Arendt K, Veline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, Resing KA, Ahn NG (2005) Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics 4:1487–1502PubMedCrossRefGoogle Scholar
  110. 110.
    Carvalho PC, Hewel J, Barbosa VC, Yates JR III (2008) Identifying differences in protein expression levels by spectral counting and feature selection. Genet Mol Res 7:342–356PubMedCrossRefGoogle Scholar
  111. 111.
    Liu H, Sadygov RG, Yates JR III (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76:4193–4201PubMedCrossRefGoogle Scholar
  112. 112.
    America AH, Cordewener JH (2008) Comparative LC-MS: a landscape of peaks and valleys. Proteomics 8:731–749PubMedCrossRefGoogle Scholar
  113. 113.
    Johansson C, Samskog J, Sundstrom L, Wadensten H, Bjorkesten L, Flensburg J (2006) Differential expression analysis of Escherichia coli proteins using a novel software for relative quantitation of LC-MS/MS data. Proteomics 6:4475–4485PubMedCrossRefGoogle Scholar
  114. 114.
    Lill J (2003) Proteomic tools for quantitation by mass spectrometry. Mass Spectrom Rev 22:182–194PubMedCrossRefGoogle Scholar
  115. 115.
    Langenfeld E, Meyer HE, Marcus K (2008) Quantitative analysis of highly homologous proteins: the challenge of assaying the “CYP-ome” by mass spectrometry. Anal Bioanal Chem 392:1123–1134PubMedCrossRefGoogle Scholar
  116. 116.
    Rivers J, Simpson DM, Robertson DH, Gaskell SJ, Beynon RJ (2007) Absolute multiplexed quantitative analysis of protein expression during muscle development using QconCAT. Mol Cell Proteomics 6:1416–1427PubMedCrossRefGoogle Scholar
  117. 117.
    Brun V, Dupuis A, Adrait A, Marcellin M, Thomas D, Court M, Vandenesch F, Garin J (2007) Isotope-labeled protein standards: toward absolute quantitative proteomics. Mol Cell Proteomics 6:2139–2149PubMedCrossRefGoogle Scholar
  118. 118.
    Basch JJ, Farrell HM Jr (1979) Charge separation of proteins complexed with sodium dodecyl sulfate by acid gel electrophoresis in the presence of cetyltrimethylammonium bromide. Biochim Biophys Acta 577:125–131PubMedGoogle Scholar
  119. 119.
    Akins RE, Tuan RS (1994) Separation of proteins using cetyltrimethylammonium bromide discontinuous gel electrophoresis. Mol Biotechnol 1:211–228PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Caroline May
    • 1
  • Frederic Brosseron
    • 1
  • Piotr Chartowski
    • 1
  • Cornelia Schumbrutzki
    • 1
  • Bodo Schoenebeck
    • 1
  • Katrin Marcus
    • 1
  1. 1.Department of Functional Proteomics, Medizinisches Proteom-CenterRuhr-Universität BochumBochumGermany

Personalised recommendations