Advertisement

Using Immuno-Scanning Electron Microscopy for the Observation of Focal Adhesion-substratum interactions at the Nano- and Microscale in S-Phase Cells

  • Manus J. P. Biggs
  • R. Geoff Richards
  • Matthew J. Dalby
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 695)

Abstract

It is becoming clear that the nano/microtopography of a biomaterial in vivo is of first importance in influencing focal adhesion formation and subsequent cellular behaviour. When considering next-generation biomaterials, where the material’s ability to elicit a regulated cell response will be key to device success, focal adhesion analysis is an useful indicator of cytocompatibility and can be used to determine functionality. Here, a methodology is described to allow simultaneous high-resolution imaging of focal adhesion sites and the material topography using field emission scanning electron microscopy. Furthermore, through the use of BrdU pulse labelling and immunogold detection, S-phase cells can be selected from a near-synchronised population of cells to remove artefacts due to cell cycle phase. This is a key factor in adhesion quantification as there is natural variation in focal adhesion density as cells progress through the cell cycle, which can skew the quantitative analysis of focal adhesion formation on fabricated biomaterials.

Key words

Nanotopography Microtopography Electron microscopy Osteoblast 

References

  1. 1.
    Meredith, D. O., Owen, G. R., ap Gwynn, I., and Richards, R. G. (2004) Variation in cell-substratum adhesion in relation to cell cycle phases. Exp. Cell Res. 293, 58–67.PubMedCrossRefGoogle Scholar
  2. 2.
    Owen, G. R., Meredith, D. O., ap Gwynn, I., and Richards, R. G. (2002) Simultaneously identifying S-phase labelled cells and immunogold-labelling of vinculin in focal adhesions. J. Microsc. 207, 27–36.PubMedCrossRefGoogle Scholar
  3. 3.
    Mokry, J. and Nemecek, S. (1995) Immuno-histochemical detection of proliferative cells. Sb Ved Pr Lek Fak Karlovy Univerzity Hradci Kralove 38, 107–113.PubMedGoogle Scholar
  4. 4.
    Biggs, M. J., Richards, R. G., McFarlane, S., Wilkinson, C. D., Oreffo, R. O., and Dalby, M. J. (2008) Adhesion formation of primary human osteoblasts and the functional response of mesenchymal stem cells to 330 nm deep microgrooves. J. R. Soc. Interface 5, 1231–1242.PubMedCrossRefGoogle Scholar
  5. 5.
    Biggs, M. J., Richards, R. G., Wilkinson, C. D., and Dalby, M. J. (2008) Focal adhesion interactions with topographical structures: a novel method for immuno-SEM labelling of focal adhesions in S-phase cells. J. Microsc. 231, 28–37.PubMedCrossRefGoogle Scholar
  6. 6.
    Biggs, M. J., Richards, R. G., Gadegaard, N., Wilkinson, C. D., and Dalby, M. J. (2006) Regulation of implant surface cell adhesion: characterization and quantification of S-phase primary osteoblast adhesions on biomimetic nanoscale substrates. J. Orthop. Res. 25, 273–282.CrossRefGoogle Scholar
  7. 7.
    Owen, G. R., Meredith, D. O., ap Gwynn, I., and Richards, R. G. (2001) Enhancement of immunogold-labelled focal adhesion sites in fibroblasts cultured on metal substrates: problems and solutions. Cell Biol. Int. 25, 1251–1259.PubMedCrossRefGoogle Scholar
  8. 8.
    Laitinen, O. H., Hytonen, V. P., Nordlund, H. R., and Kulomaa, M. S. (2006) Genetically engineered avidins and streptavidins. Cell Mol. Life Sci. 63, 2992–3017.Google Scholar
  9. 9.
    Richards, R. G. and ap Gwynn, I. (1995) Microjet impingement followed by scanning electron microscopy as a qualitative technique to compare cellular adhesion to various biomaterials. Cell Biol. Int. 19(12), 1015–1024.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Manus J. P. Biggs
    • 1
  • R. Geoff Richards
    • 2
  • Matthew J. Dalby
    • 3
  1. 1.Department of Applied Physics and Applied Mathematics, Nanotechnology Center for Mechanics in Regenerative MedicineColumbia UniversityNew YorkUSA
  2. 2.AO Research Institute DavosDavos PlatzSwitzerland
  3. 3.Centre for Cell Engineering, Faculty of Biomedical and Life ScienceUniversity of GlasgowGlasgowUK

Personalised recommendations