3D Cell Culture: A Review of Current Approaches and Techniques

Part of the Methods in Molecular Biology book series (MIMB, volume 695)

Abstract

Cell culture in two dimensions has been routinely and diligently undertaken in thousands of laboratories worldwide for the past four decades. However, the culture of cells in two dimensions is arguably primitive and does not reproduce the anatomy or physiology of a tissue for informative or useful study. Creating a third dimension for cell culture is clearly more relevant, but requires a multidisciplinary approach and multidisciplinary expertise. When entering the third dimension, investigators need to consider the design of scaffolds for supporting the organisation of cells or the use of bioreactors for controlling nutrient and waste product exchange. As 3D culture systems become more mature and relevant to human and animal physiology, the ability to design and develop co-cultures becomes possible as does the ability to integrate stem cells. The primary objectives for developing 3D cell culture systems vary widely – and range from engineering tissues for clinical delivery through to the development of models for drug screening. The intention of this review is to provide a general overview of the common approaches and techniques for designing 3D culture models.

Key words

Cell culture Bioreactor Biomaterials Tissue engineering Imaging Scaffold Stem cells 

References

  1. 1.
    Freshney, I. R. (2005) Culture of animal Cells. A Manual of Basic Technique, 5 ed. John Wiley & Sons, Hoboken, NJ.CrossRefGoogle Scholar
  2. 2.
    Abbott, A. (2003) Cell culture: Biology’s new dimension. Nature 424, 870–872.PubMedCrossRefGoogle Scholar
  3. 3.
    Langer, R. and Tirrell, D. A. (2004) Designing materials for biology and medicine. Nature 428, 487–492.PubMedCrossRefGoogle Scholar
  4. 4.
    Lee, J., Cuddihy, M. J., and Kotov, N. A. (2008) Three-dimensional cell culture matrices: State of the art. Tissue Eng. Part B Rev. 14, 61–86.PubMedCrossRefGoogle Scholar
  5. 5.
    Lavik, E. and Langer, R. (2004) Tissue engineering: current state and perspectives. Applied Microbiol. Biotechnol. 65, 1–8.CrossRefGoogle Scholar
  6. 6.
    Pampaloni, F., Reynaud, E. G., and Stelzer, E. H. K. (2007) The third dimension bridges the gap between cell culture and live tissue. Nature Rev. Mol. Cell Biol. 8, 839–845.CrossRefGoogle Scholar
  7. 7.
    Toda, S., Watanabe, K., Yokoi, F., Matsumura, S., Suzuki, K., Ootani, A., Aoki, A., Koike, N., and Sugihara, H. (2002) A new organotypic culture of thyroid tissue maintains three-dimensional follicles with C cells for a long term. Biochem. Biophys. Res. Commun. 294, 906–911.PubMedCrossRefGoogle Scholar
  8. 8.
    Hadjantonakis, A. K., Dickinson, M. E., Fraser, S. E., and Papaioannou, V. E. (2003) Technicolour transgenics: Imaging tools for functional genomics in the mouse. Nature Rev. Genet. 4, 613–625.PubMedCrossRefGoogle Scholar
  9. 9.
    Timmins, N. E., Harding, F. J., Smart, C., Brown, M. A., and Nielsen, L. K. (2005) Method for the generation and cultivation of functional three-dimensional mammary constructs without exogenous extracellular matrix. Cell Tissue Res. 320, 207–210.PubMedCrossRefGoogle Scholar
  10. 10.
    Castaneda, F. and Kinne, R. K. H. (2000) Short exposure to millimolar concentrations of ethanol induces apoptotic cell death in multicellular HepG2 spheroids. J. Cancer Res. Clin. Oncol. 126, 305–310.PubMedCrossRefGoogle Scholar
  11. 11.
    Ivascu, A. and Kubbies, M. (2006) Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis. J. Biomol. Screen. 11, 922–932.PubMedCrossRefGoogle Scholar
  12. 12.
    MacNeil, S. (2007) Progress and opportunities for tissue-engineered skin. Nature 445, 874–880.PubMedCrossRefGoogle Scholar
  13. 13.
    Ghosh, M. M., Boyce, S., Layton, C., Freedlander, E., and MacNeil, S. (1997) A comparison of methodologies for the preparation of human epidermal-dermal composites. Annals Plastic Surg. 39, 390–404.CrossRefGoogle Scholar
  14. 14.
    Griffith, L. G. and Swartz, M. A. (2006) Capturing complex 3D tissue physiology in vitro. Nature Rev. Mol. Cell Biol. 7, 211–224.CrossRefGoogle Scholar
  15. 15.
    Canton, I., Sarwar, U., Kemp, E. H., Ryan, A. J., MacNeil, S., and Haycock, J. W. (2007) Real-time detection of stress in 3D tissue-engineered constructs using NF-kB activation in transiently transfected human dermal fibroblasts. Tissue Eng. 13, 1013–1024.PubMedCrossRefGoogle Scholar
  16. 16.
    Allen, L. T., Tosetto, M., Miller, I. S., O’Connor, D. P., Penney, S. C., Lynch, I., Keenan, A. K., Pennington, S. R., Dawson, K. A., and Gallagher, W. M. (2006) Surface-induced changes in protein adsorption and implications for cellular phenotypic responses to surface interaction. Biomaterials 27, 3096–3108.PubMedCrossRefGoogle Scholar
  17. 17.
    Wilson, C. J., Clegg, R. E., Leavesley, D. I., and Pearcy, M. J. (2005) Mediation of biomaterial-cell interactions by adsorbed proteins: A review. Tissue Eng. 11, 1–18.PubMedCrossRefGoogle Scholar
  18. 18.
    Vroman, L. and Lukosevicius, A. (1964) Ellipsometer recordings of changes in optical thickness of adsorbed films associated with surface activation of blood clotting. Nature 204, 701.PubMedCrossRefGoogle Scholar
  19. 19.
    Vroman, L. (1962) Effect of adsorbed proteins on wettability of hydrophilic and hydrophobic solids. Nature 196, 476.PubMedCrossRefGoogle Scholar
  20. 20.
    Murray-Dunning, C. M., McKean, R., Forster, S., Ryan, A. J., McArthur, S. L., and Haycock, J. W. (2010) Three-dimensional alignment of Schwann cells using hydrolysable microfibre scaffolds – strategies for peripheral nerve repair. Methods Mol. Biol. 695, 155–166. Google Scholar
  21. 21.
    France, R. M., Short, R. D., Dawson, R. A., and MacNeil, S. (1998) Attachment of human keratinocytes to plasma co-polymers of acrylic acid octa-1,7-diene and allyl amine octa-1,7-diene. J. Mat. Chem. 8, 37–42.CrossRefGoogle Scholar
  22. 22.
    Sharma, S., Johnson, R. W., and Desai, T. A. (2004) Evaluation of the stability of nonfouling ultrathin poly(ethylene glycol) films for silicon-based microdevices. Langmuir 20, 348–356.PubMedCrossRefGoogle Scholar
  23. 23.
    Massia, S. P. and Hubbell, J. A. (1991) An RGD spacing of 440 nM is sufficient for integrin alpha-v-beta-3-mediated fibroblast spreading and 140 nM for focal contact and stress fiber formation. J. Cell Biol. 114, 1089–1100.PubMedCrossRefGoogle Scholar
  24. 24.
    Barry, J. J. A., Silva, M. M. C. G., Shakesheff, K. M., Howdle, S. M., and Alexander, M. R. (2005) Using plasma deposits to promote cell population of the porous interior of three-dimensional poly(d,l-lactic acid) tissue-engineering scaffolds. Adv. Funct. Mater. 15, 1134–1140.CrossRefGoogle Scholar
  25. 25.
    Hollister, S. J. (2005) Porous scaffold design for tissue engineering. Nature Mater. 4, 518–524.CrossRefGoogle Scholar
  26. 26.
    Sun, T., Norton, D., Vickers, N., McArthur, S. L., Mac Neil, S., Ryan, A. J., and Haycock, J. W. (2008) Development of a bioreactor for evaluating novel nerve conduits. Biotechnol. Bioeng. 99, 1250–1260.PubMedCrossRefGoogle Scholar
  27. 27.
    Sun, T., Mai, S. M., Norton, D., Haycock, J. W., Ryan, A. J., and MacNeil, S. (2005) Self-organization of skin cells in three-dimensional electrospun polystyrene scaffolds. Tissue Eng. 11, 1023–1033.PubMedCrossRefGoogle Scholar
  28. 28.
    Blackwood, K. A., McKean, R., Canton, I., Freeman, C. O., Franklin, K. L., Cole, D., Brook, I., Farthing, P., Rimmer, S., Haycock, J. W., Ryan, A. J., and MacNeil, S. (2008) Development of biodegradable electrospun scaffolds for dermal replacement. Biomaterials 29, 3091–3104.PubMedCrossRefGoogle Scholar
  29. 29.
    Stevens, M. M. and George, J. H. (2005) Exploring and engineering the cell surface interface. Science 310, 1135–1138.PubMedCrossRefGoogle Scholar
  30. 30.
    Martin, I., Wendt, D., and Heberer, M. (2004) The role of bioreactors in tissue engineering. Trends Biotechnol. 22, 80–86.PubMedCrossRefGoogle Scholar
  31. 31.
    Allori, A. C., Sailon, A. M., Pan, J. H., and Warren, S. M. (2008) Biological basis of bone formation, remodeling, and repair – Part III: Biomechanical forces. Tissue Eng. Part B Rev. 14, 285–293.PubMedCrossRefGoogle Scholar
  32. 32.
    Engler, A. J., Sen, S., Sweeney, H. L., and Discher, D. E. (2006) Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689.PubMedCrossRefGoogle Scholar
  33. 33.
    Sun, T., Norton, D., Mckean, R. J., Haycock, J. W., Ryan, A. J., and MacNeil, S. (2007) Development of a 3D cell culture system for investigating cell interactions with electrospun fibers. Biotechnol. Bioeng. 97, 1318–1328.PubMedCrossRefGoogle Scholar
  34. 34.
    Geiger, B., Spatz, J. P., and Bershadsky, A. D. (2009) Environmental sensing through focal adhesions. Nature Rev. Mol. Cell Biol. 10, 21–33.CrossRefGoogle Scholar
  35. 35.
    Zhang, S. (2008) Designer self-assembling peptide nanofiber scaffolds for study of 3-D cell biology and beyond. Adv. Cancer Res. 99, 335–340.PubMedCrossRefGoogle Scholar
  36. 36.
    Ma, P. X. and Zhang, R. Y. (1999) Synthetic nano-scale fibrous extracellular matrix. J. Biomed. Mater. Res. 46, 60–72.PubMedCrossRefGoogle Scholar
  37. 37.
    Sachlos, E., Gotora, D., and Czernuszka, J. T. (2006) Collagen scaffolds reinforced with biomimetic composite nano-sized carbonate-substituted hydroxyapatite crystals and shaped by rapid prototyping to contain internal microchannels. Tissue Eng. 12, 2479–2487.PubMedCrossRefGoogle Scholar
  38. 38.
    VunjakNovakovic, G., Freed, L. E., Biron, R. J., and Langer, R. (1996) Effects of mixing on the composition and morphology of tissue-engineered cartilage. AIChE J. 42, 850–860.CrossRefGoogle Scholar
  39. 39.
    Unsworth, B. R. and Lelkes, P. I. (1998) Growing tissues in microgravity. Nature Med. 4, 901–907.PubMedCrossRefGoogle Scholar
  40. 40.
    Wendt, D., Marsano, A., Jakob, M., Heberer, M., and Martin, I. (2003) Oscillating perfusion of cell suspensions through three-dimensional scaffolds enhances cell seeding efficiency and uniformity. Biotechnol. Bioeng. 84, 205–214.PubMedCrossRefGoogle Scholar
  41. 41.
    Jasmund, I., Simmoteit, R., and Bader, A. (2001) An improved oxygenation hollow fiber bioreactor for the cultivation of liver cells. Animal Cell Technology: from Target to Market 1, 545–547. Kluwer Academic Publishers, London.CrossRefGoogle Scholar
  42. 42.
    Demarteau, O., Jakob, M., Schafer, D., Heberer, M., and Martin, I. (2003) Development and validation of a bioreactor for physical stimulation of engineered cartilage. Biorheology 40, 331–336.PubMedGoogle Scholar
  43. 43.
    Rubin, J., Rubin, C., and Jacobs, C. R. (2006) Molecular pathways mediating mechanical signaling in bone. Gene 367, 1–16.PubMedCrossRefGoogle Scholar
  44. 44.
    Rodriguez, A., Cao, Y. L., Ibarra, C., Pap, S., Vacanti, M., Eavey, R. D., and Vacanti, C. A. (1999) Characteristics of cartilage engineered from human pediatric auricular cartilage. Plast. Reconstr. Surg. 103, 1111–1119.PubMedCrossRefGoogle Scholar
  45. 45.
    O’Connell, P. (2002) Pancreatic islet xenotransplantation. Xenotransplantation 9, 367–371.PubMedCrossRefGoogle Scholar
  46. 46.
    O’Connor, S. M., Stenger, D. A., Shaffer, K. M., Maric, D., Barker, J. L., and Ma, W. (2000) Primary neural precursor cell expansion, differentiation and cytosolic Ca2+ response in three-dimensional collagen gel. J. Neurosci. Methods 102, 187–195.PubMedCrossRefGoogle Scholar
  47. 47.
    Gage, F. H. (2000) Mammalian neural stem cells. Science 287, 1433–1438.PubMedCrossRefGoogle Scholar
  48. 48.
    Teng, Y. D., Lavik, E. B., Qu, X. L., Park, K. I., Ourednik, J., Zurakowski, D., Langer, R., and Snyder, E. Y. (2002) Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl. Acad. Sci. 99, 3024–3029.PubMedCrossRefGoogle Scholar
  49. 49.
    Levenberg, S., Golub, J. S., Amit, M., Itskovitz-Eldor, J., and Langer, R. (2002) Endothelial cells derived from human embryonic stem cells. Proc Natl. Acad. Sci. 99, 4391–4396.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2011

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering, Kroto Research InstituteUniversity of SheffieldSheffieldUK

Personalised recommendations