Advertisement

Protein Identification from Tandem Mass Spectra by Database Searching

  • Nathan J. Edwards
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 694)

Abstract

Protein identification from tandem mass spectra is one of the most versatile and widely used proteomics workflows, able to identify proteins, characterize post-translational modifications, and provide semi-quantitative measurements of relative protein abundance. This manuscript describes the concepts, prerequisites, and methods required to analyze a tandem mass spectrometry dataset in order to identify its proteins, by using a tandem mass spectrometry search engine to search protein sequence databases. The discussion includes instructions for extraction, preparation, and formatting of spectral datafiles; selection of appropriate search parameter settings; and basic interpretation of the results.

Key words

Protein identification MS/MS spectra Protein sequence databases Peptide identification Search engine 

Notes

Acknowledgments

The preparation of this manuscript was supported, in part, by CPTI Grant R01 CA126189.

References

  1. 1.
    Aebersold, R. and Mann, M. (2003) Mass spectrometry-based proteomics. Nature 422, 198–207.PubMedCrossRefGoogle Scholar
  2. 2.
    Deutsch, E. W., Lam, H., and Aebersold, R. (2008) Data analysis and bioinformatics tools for tandem mass spectrometry in proteomics. Physiological Genomics 33, 18–25.PubMedCrossRefGoogle Scholar
  3. 3.
    Johnson, R., Davis, M., Taylor, J., and Patterson, S. (2005) Informatics for protein identification by mass spectrometry. Methods 35, 223–236.PubMedCrossRefGoogle Scholar
  4. 4.
    Maccoss, M. (2005) Computational analysis of shotgun proteomics data. Current Opinion in Chemical Biology 9, 88–94.PubMedCrossRefGoogle Scholar
  5. 5.
    McDonald, W. H. and Yates, J. R. (2003) Shotgun proteomics: integrating technologies to answer biological questions. Current Opinion in Molecular Therapeutics 5, 302–309.PubMedGoogle Scholar
  6. 6.
    Nesvizhskii, A. I. (2007) Mass Spectrometry Data Analysis in Proteomics, volume 367 of Methods in Molecular Biology, chapter Protein Identification by Tandem Mass Spectrometry and Sequence Database Searching, 87–119. Humana Press, Totowa, NJ.Google Scholar
  7. 7.
    Sadygov, R. G., Cociorva, D., and Yates, J. R. (2004) Large-scale database searching using tandem mass spectra: looking up the answer in the back of the book. Nature Methods 1, 195–202.PubMedCrossRefGoogle Scholar
  8. 8.
    Bafna, V. and Edwards, N. (2003) On de novo interpretation of tandem mass spectra for ­peptide identification. In RECOMB ’03: Proceedings of the Seventh Annual International Conference on Research in Computational Molecular Biology, 9–18. ACM Press, New York.Google Scholar
  9. 9.
    Chen, T., Kao, M. Y., Tepel, M., Rush, J., and Church, G. M. (2001) A dynamic programming approach to de novo peptide sequencing via tandem mass spectrometry. Journal of Computational Biology 8, 325–337.PubMedCrossRefGoogle Scholar
  10. 10.
    Frank, A. and Pevzner, P. (2005) Pepnovo: de novo peptide sequencing via probabilistic network modeling. Analytical Chemistry 77, 964–973.PubMedCrossRefGoogle Scholar
  11. 11.
    Taylor, A. and Johnson, R. S. (1997) Sequence database searches via de novo peptide sequencing by tandem mass spectrometry. Rapid Communications in Mass Spectrometry 11, 1067–1075.PubMedCrossRefGoogle Scholar
  12. 12.
    Mann, M. and Wilm, M. (1994) Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Analytical Chemistry 66, 4390–4399.PubMedCrossRefGoogle Scholar
  13. 13.
    Tabb, D. L., Ma, Z.-Q., Martin, D. B., Ham, A.-J. L., and Chambers, M. C. (2008) DirecTag: accurate sequence tags from peptide MS/MS through statistical scoring. Journal of Proteome Research 7, 3838–3846.PubMedCrossRefGoogle Scholar
  14. 14.
    Tanner, S., Shu, H., Frank, A., Wang, L. C., Zandi, E., Mumby, M., Pevzner, P. A., and Bafna, V. (2005) Inspect: identification of post-translationally modified peptides from tandem mass spectra. Analytical Chemistry 77, 4626–4639.PubMedCrossRefGoogle Scholar
  15. 15.
    Dass, C. (2001) Principles and Practice of Biological Mass Spectrometry. John Wiley & Sons, Inc., New York.Google Scholar
  16. 16.
    Perkins, D. N., Pappin, D. J., Creasy, D. M., and Cottrell, J. S. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567.PubMedCrossRefGoogle Scholar
  17. 17.
    Eng, J. K., McCormack, A. L., and Yates, J. R. (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. Journal of the American Society of Mass Spectrometry 5, 976–989.CrossRefGoogle Scholar
  18. 18.
    Craig, R. and Beavis, R. C. (2004) Tandem: matching proteins with tandem mass spectra. Bioinformatics 20, 1466–1467.PubMedCrossRefGoogle Scholar
  19. 19.
    Geer, L. Y., Markey, S. P., Kowalak, J. A., Wagner, L., Xu, M., Maynard, D. M., Yang, X., Shi, W., and Bryant, S. H. (2004) Open mass spectrometry search algorithm. Journal of Proteome Research 3, 958–964.PubMedCrossRefGoogle Scholar
  20. 20.
    Kersey, P. J., Duarte, J., Williams, A., Karavidopoulou, Y., Birney, E., and Apweiler, R. (2004) The International Protein Index: an integrated database for proteomics experiments. Proteomics 4, 1985–1988.PubMedCrossRefGoogle Scholar
  21. 21.
    The Uniprot Consortium (2010) The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Research 38, D142–D148.CrossRefGoogle Scholar
  22. 22.
    Edwards, N. J. (2007) Novel peptide identification from tandem mass spectra using ESTs and sequence database compression. Molecular Systems Biology 3, 102.PubMedGoogle Scholar
  23. 23.
    Keller, A., Eng, J., Zhang, N., Li, X.-J. J., and Aebersold, R. (2005) A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Molecular Systems Biology 1, 2005.0017.Google Scholar
  24. 24.
    Kessner, D., Chambers, M., Burke, R., Agus, D., and Mallick, P. (2008) ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24, 2534–2536.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Nathan J. Edwards
    • 1
  1. 1.Department of Biochemistry and Molecular & Cellular BiologyGeorgetown University Medical CenterWashingtonUSA

Personalised recommendations