Bioinformatics for Comparative Proteomics pp 109-117

Part of the Methods in Molecular Biology book series (MIMB, volume 694) | Cite as

Modeling Mass Spectrometry-Based Protein Analysis

Protocol

Abstract

The success of mass spectrometry based proteomics depends on efficient methods for data analysis. These methods require a detailed understanding of the information value of the data. Here, we describe how the information value can be elucidated by performing simulations using synthetic data.

Key words

Protein identification Simulations Synthetic mass spectra Significance testing Value of information Peptide mass fingerprinting Tandem mass spectrometry 

References

  1. 1.
    Eriksson J, Fenyo D. (2007) Improving the success rate of proteome analysis by modeling protein-abundance distributions and experimental designs. Nat Biotechnol 25, 651–655.PubMedCrossRefGoogle Scholar
  2. 2.
    Henzel WJ, Billeci TM, Stults JT, Wong SC, Grimley C, Watanabe C. (1993) Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci U S A 90, 5011–5015.PubMedCrossRefGoogle Scholar
  3. 3.
    Mann M, Wilm M. (1994) Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal Chem 66, 4390–4399.PubMedCrossRefGoogle Scholar
  4. 4.
    Eng JK, McCormack AL, Yates JR. (1994) An approach to correlate mass spectral data with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5, 976.CrossRefGoogle Scholar
  5. 5.
    Craig R, Cortens JC, Fenyo D, Beavis RC. (2006) Using annotated peptide mass ­spectrum libraries for protein identification. J Proteome Res 5, 1843–1849.PubMedCrossRefGoogle Scholar
  6. 6.
    Lam H, Deutsch EW, Eddes JS, Eng JK, King N, Stein SE, Aebersold R. (2007) Development and validation of a spectral library searching method for peptide identification from MS/MS. Proteomics 7, 655–667.PubMedCrossRefGoogle Scholar
  7. 7.
    Fenyo D, Qin J, Chait BT. (1998) Protein identification using mass spectrometric information. Electrophoresis 19, 998–1005.Google Scholar
  8. 8.
    Eriksson J, Fenyo D. (2004) Probity, a protein identification algorithm with accurate assignment of the statistical significance of the results. J Proteome Res 3, 32–36.PubMedCrossRefGoogle Scholar
  9. 9.
    Field HI, Fenyo D, Beavis RC. (2002) RADARS, a bioinformatics solution that automates proteome mass spectral analysis, optimises protein identification, and archives data in a relational database. Proteomics 2, 36–47.PubMedCrossRefGoogle Scholar
  10. 10.
    Fenyo D, Beavis RC. (2003) A method for assessing the statistical significance of mass spectrometry-based protein identifications using general scoring schemes. Anal Chem 75, 768–774.PubMedCrossRefGoogle Scholar
  11. 11.
    Eriksson J, Chait BT, Fenyo D. (2000) A ­statistical basis for testing the significance of mass spectrometric protein identification results. Anal Chem 72, 999–1005.PubMedCrossRefGoogle Scholar
  12. 12.
    Eriksson J, Fenyo D. (2004) The statistical significance of protein identification results as a function of the number of protein sequences searched. J Proteome Res 3, 979–982.PubMedCrossRefGoogle Scholar
  13. 13.
    Eriksson J, Fenyo D. (2005) Protein identification in complex mixtures. J Proteome Res 4, 387–393.PubMedCrossRefGoogle Scholar
  14. 14.
    Jensen ON, Podtelejnikov AV, Mann M. (1997) Identification of the components of simple protein mixtures by high accuracy peptide mass mapping and database searching. Anal Chem 69, 4741–4750.PubMedCrossRefGoogle Scholar
  15. 15.
    Eriksson J, Fenyo D. (2009) Peptide identification with direct computation of the significance level of the results. Proceedings of the 57th ASMS Conference on Mass Spectrometry.Google Scholar
  16. 16.
    Fenyo D, Ossipova E, Eriksson J. (2008) The peptide fragment mass information required to identify peptides and their post-translational modifications. Proceedings of the 56th ASMS Conference on Mass Spectrometry.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Swedish University of Agricultural SciencesUppsalaSweden
  2. 2.The Rockefeller UniversityNew YorkUSA

Personalised recommendations