Drill Hole Defects: Induction, Imaging, and Analysis in the Rodent

  • Andre ObenausEmail author
  • Pedro Hayes
Part of the Methods in Molecular Biology book series (MIMB, volume 690)


Advances in stem therapy, scaffolds, and therapeutic biomolecules are accelerating bone repair research, and model systems are required to test new methods and concepts. The drill hole defect is one such model and is used to study a variety of bone defects and potential therapies designed to repair these injuries. We detail the methodologies required to successfully generate and evaluate drill hole defects. Although performing a successful drill hole defect requires patience and dexterity, investing the time to perfect the technique will provide ample opportunity for the researcher to expand his/her particular research interests. Mastering this technique will allow testing of stem cell therapies, novel scaffold designs, and biomolecules that can be used for clinical translation.

Key words

Drill hole defect Surgery Stereotaxic Magnetic resonance imaging Computerized tomography 


  1. 1.
    Kumar, S., and Ponnazhagan, S. (2007) Bone homing of mesenchymal stem cells by ectopic alpha 4 integrin expression. FASEB J. 21, 3917–3927.PubMedCrossRefGoogle Scholar
  2. 2.
    Lee, S.W., Padmanabhan, P., Ray, P., Gambhir, S.S., Doyle, T., Contag, C., et al. (2009) Stem cell-mediated accelerated bone healing observed with in vivo molecular and small animal imaging technologies in a model of skeletal injury. J Orthop Res. 27(3), 295–302.PubMedCrossRefGoogle Scholar
  3. 3.
    Hayashi, O., Katsube, Y., Hirose, M., Ohgushi, H., and Ito, H. (2008) Comparison of osteogenic ability of rat mesenchymal stem cells from bone marrow, periosteum, and adipose tissue. Calcif Tissue Int . 82(3), 238–247.PubMedCrossRefGoogle Scholar
  4. 4.
    Chang, S.C., Chuang, H., Chen, Y.R., Yang, L.C., Chen, J.K., Mardini, S., et al. (2004) Cranial repair using BMP-2 gene engineered bone marrow stromal cells. J Surg Res. 119(1), 85–91.PubMedCrossRefGoogle Scholar
  5. 5.
    Cui, L., Liu, B., Liu, G., Zhang, W., Cen, L., Sun, J., et al. (2007) Repair of cranial bone defects with adipose derived stem cells and coral scaffold in a canine model. Biomaterials. 28(36), 5477–5486.PubMedCrossRefGoogle Scholar
  6. 6.
    Centeno, C.J., Busse, D., Kisiday, J., Keohan, C., Freeman, M., and Karli, D. (2008) Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician. 11(3), 343–353.PubMedGoogle Scholar
  7. 7.
    Bikram, M., Fouletier-Dilling, C., Hipp, J.A., Gannon, F., Davis, A.R., Olmsted-Davis, E.A., et al. (2007) Endochondral bone formation from hydrogel carriers loaded with BMP2-transduced cells. Ann Biomed Eng. 35(5), 796–807.PubMedCrossRefGoogle Scholar
  8. 8.
    Ge, Z., Tian, X., Heng, B.C., Fan, V., Yeo, J.F., and Cao, T. (2009) Histological evaluation of osteogenesis of 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds in a rabbit model. Biomed Mater. 4(2), 21001.CrossRefGoogle Scholar
  9. 9.
    Petersen, W,. Zelle, S., and Zantop, T. (2008) Arthroscopic implantation of a three dimensional scaffold for autologous chondrocyte transplantation. Arch Orthop Trauma Surg. 128(5), 505–508.PubMedCrossRefGoogle Scholar
  10. 10.
    Williams, J.M., Adewunmi, A., Schek, R.M., Flanagan, C.L., Krebsbach, P.H., Feinberg, S.E., et al. (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 26(23), 4817–4827.PubMedCrossRefGoogle Scholar
  11. 11.
    Claase, M.B., de Bruijn, J.D., Grijpma, D.W., and Feijen, J. (2007) Ectopic bone formation in cell-seeded poly(ethylene oxide)/poly(butylene terephthalate) copolymer scaffolds of varying porosity. J Mater Sci Mater Med. 18(7), 1299–1307.PubMedCrossRefGoogle Scholar
  12. 12.
    Krupa, P., Krsek, P., Javornik, M., Dostál, O., Srnec, R., Usvald, D., et al. (2007) Use of 3D geometry modeling of osteochondrosis-like iatrogenic lesions as a template for press-and-fit scaffold seeded with mesenchymal stem cells. Physiol Res. 56(Suppl 1), S107–S114.PubMedGoogle Scholar
  13. 13.
    Weinand, C., Pomerantseva, I., Neville, C.M., Gupta, R., Weinberg, E., Madisch, I., et al. (2006) Hydrogel-beta-TCP scaffolds and stem cells for tissue engineering bone. Bone. 38(4), 555–563.PubMedCrossRefGoogle Scholar
  14. 14.
    Bolland, B.J., Kanczler, J.M., Dunlop, D.G., and Oreffo, R.O. (2008) Development of in vivo muCT evaluation of neovascularisation in tissue engineered bone constructs. Bone. 43(1), 195–202.PubMedCrossRefGoogle Scholar
  15. 15.
    Park, C.H., Abramson, Z.R., Taba, M. Jr., Jin, Q., Chang, J., Kreider, J.M., et al. (2007) Three-dimensional micro-computed tomographic imaging of alveolar bone in experimental bone loss or repair. J Periodontol. 78(2), 273–281.PubMedCrossRefGoogle Scholar
  16. 16.
    Datir, A.P. (2007) Stress-related bone injuries with emphasis on MRI. Clin Radiol. 62(9), 828–836.PubMedCrossRefGoogle Scholar
  17. 17.
    Ecklund, K., Vajapeyam, S., Feldman, H.A., Buzney, C.D., Mulkern, R.V., Kleinman, P.K., et al. (2010) Bone marrow changes in adolescent girls with anorexia nervosa. J Bone Miner Res. 25(2), 298–304.PubMedCrossRefGoogle Scholar
  18. 18.
    Ehrhart, N., Kraft, S., Conover, D., Rosier, R.N., and Schwarz, E.M. (2008) Quantification of massive allograft healing with dynamic contrast enhanced-MRI and cone beam-CT: a pilot study. Clin Orthop Relat Res. 466(8), 1897–1904.PubMedCrossRefGoogle Scholar
  19. 19.
    Moinnes, J.J., Vidula, N., Halim, N., and Othman, S.F. (2006) Ultrasound accelerated bone tissue engineering monitored with magnetic resonance microscopy. Conf Proc IEEE Eng Med Biol Soc. 1, 484–488.PubMedCrossRefGoogle Scholar
  20. 20.
    Love, Z., Wang, F., Dennis, J., Awadallah, A., Salem, N., Lin, Y., et al. (2007) Imaging of mesenchymal stem cell transplant by bioluminescence and PET. J Nucl Med. 48(12), 2011–2020.PubMedCrossRefGoogle Scholar
  21. 21.
    Pereira, A.C., Fernandes, R.G., Carvalho, Y.R., Balducci, I., Faig-Leite, H. (2007) Bone healing in drill hole defects in spontaneously hypertensive male and female rats’ femurs. A histological and histometric study. Arq Bras Cardiol. 88(1), 104–109.PubMedCrossRefGoogle Scholar
  22. 22.
    Katae, Y., Tanaka, S., Sakai, A., Nagashima, M., Hirasawa, H., and Nakamura, T. (2009) Elcatonin injections suppress systemic bone resorption without affecting cortical bone regeneration after drill-hole injuries in mice. J Orthop Res. 27(12), 1652–1658.PubMedCrossRefGoogle Scholar
  23. 23.
    Nagashima, M., Sakai, A., Uchida, S., Tanaka, S., Tanaka, M., and Nakamura, T. (2005) Bisphosphonate (YM529) delays the repair of cortical bone defect after drill-hole injury by reducing terminal differentiation of osteoblasts in the mouse femur. Bone. 36(3), 502–511.PubMedCrossRefGoogle Scholar
  24. 24.
    Obenaus, A., and Smith, A. (2004) Radiation dose in rodent tissues during micro-CT Imaging. J X-Ray Sci Technol. 12, 241–249.Google Scholar
  25. 25.
    Willey, J.S., Grilly, L.G., Howard, S.H., Pecaut, M.J., Obenaus, A., Gridley, D.S., et al. (2008) Bone architectural and structural properties after 56Fe26+ radiation-induced changes in body mass. Radiat Res. 170(2), 201–207.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Non-Invasive Imaging Laboratory, Department of Biophysics and Bioengineering, Departments of Radiation Medicine, Pediatrics, and Radiology, School of Medicine, School of Science and TechnologyLoma Linda UniversityLoma LindaUSA
  2. 2.Non-Invasive Imaging Laboratory, Departments of Radiation Medicine, Pediatrics, and Radiology, Department of Biophysics and Bioengineering, School of Medicine, School of Science and TechnologyLoma Linda UniversityLoma LindaUSA

Personalised recommendations