Human Embryonic Stem Cell-Derived Mesenchymal Progenitors: An Overview

  • Peiman Hematti
Protocol

Abstract

Mesenchymal stromal/stem cells (MSCs) were originally isolated from bone marrow (BM), but are now known to be present in all fetal and adult tissues. These multipotent cells can be differentiated into at least three downstream mesenchymal lineages that include bone, cartilage, and fat. However, under some experimental conditions, these cells can differentiate into nonmesenchymal cell types and/or participate in regeneration of damaged tissues through a variety of mechanisms. Most recently, MSCs have been derived from human embryonic stem cells (hESCs) through several different methodologies. Human MSCs derived from hESCs have been shown to possess characteristics very similar to BM-derived MSCs. Thus, the generation of MSCs from hESCs provides an opportunity to study the developmental biology of cells of mesenchymal lineages in an appropriate in vitro model. Furthermore, MSCs from different adult tissue sources are being actively investigated in a multitude of clinical trials; therefore, hESCs could provide an unlimited source of MSCs for potential clinical applications in the future. Such MSCs could be used without further differentiation for regeneration of tissues, or they could be directed towards specific lineage pathways, such as bone and cartilage, for reconstruction of tissues. Finally, immunomodulatory properties of hESC-derived MSCs are likely to prove valuable for inducing immune tolerance toward other cells or tissues derived from the same hESC lines.

Key words

Embryonic stem cell Mesenchymal stromal cell Mesenchymal stem cell 

References

  1. 1.
    Friedenstein, A. J., Petrakova, K. V., Kurolesova, A. I., and Frolova, G. P. (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 6, 230–247.PubMedCrossRefGoogle Scholar
  2. 2.
    Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science. 284, 143–147.PubMedCrossRefGoogle Scholar
  3. 3.
    Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., et al. (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7, 211–228.PubMedCrossRefGoogle Scholar
  4. 4.
    Williams, J. T., Southerland, S. S., Souza, J., Calcutt, A. F., and Cartledge, R. G. (1999) Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes. Am. Surg. 65, 22–26.PubMedGoogle Scholar
  5. 5.
    De Bari, C., Dell’Accio, F., Tylzanowski, P., and Luyten, F. P. (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 44, 1928–1942.PubMedCrossRefGoogle Scholar
  6. 6.
    Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., and Shi, S. (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. USA. 97, 13625–13630.PubMedCrossRefGoogle Scholar
  7. 7.
    Hoogduijn, M. J., Crop, M. J., Peeters, A. M., Van Osch, G. J., Balk, A. H., Ijzermans, J. N., et al. (2007) Human heart, spleen, and perirenal fat-derived mesenchymal stem cells have immunomodulatory capacities. Stem Cells Dev. 16, 597–604.PubMedCrossRefGoogle Scholar
  8. 8.
    In ’t Anker, P. S., Scherjon, S. A., Kleijburg-van der Keur, C., de Groot-Swings, G. M., Claas, F. H., Fibbe, W. E., et al. (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells. 22, 1338–1345.PubMedCrossRefGoogle Scholar
  9. 9.
    In ’t Anker, P. S., Scherjon, S. A., Kleijburg-van der Keur, C., Noort, W. A., Claas, F. H., Willemze, R., Fibbe, W. E., et al. (2003) Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood. 102, 1548–1549.PubMedCrossRefGoogle Scholar
  10. 10.
    Bieback, K., Kern, S., Kluter, H., and Eichler, H. (2004) Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells. 22, 625–634.PubMedCrossRefGoogle Scholar
  11. 11.
    Campagnoli, C., Roberts, I. A., Kumar, S., Bennett, P. R., Bellantuono, I., and Fisk, N. M. (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood. 98, 2396–2402.PubMedCrossRefGoogle Scholar
  12. 12.
    Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., et al. (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 8, 315–317.PubMedCrossRefGoogle Scholar
  13. 13.
    Xu, C., Jiang, J., Sottile, V., McWhir, J., Lebkowski, J., and Carpenter, M. K. (2004) Immortalized fibroblast-like cells derived from human embryonic stem cells support undifferentiated cell growth. Stem Cells. 22, 972–980.PubMedCrossRefGoogle Scholar
  14. 14.
    Stojkovic, P., Lako, M., Stewart, R., Przyborski, S., Armstrong, L., Evans, J., et al. (2005) An autogeneic feeder cell system that efficiently supports growth of undifferentiated human embryonic stem cells. Stem Cells. 23, 306–314.PubMedCrossRefGoogle Scholar
  15. 15.
    Wang, Q., Fang, Z. F., Jin, F., Lu, Y., Gai, H., and Sheng, H. Z. (2005) Derivation and growing human embryonic stem cells on feeders derived from themselves. Stem Cells. 23, 1221–1227.PubMedCrossRefGoogle Scholar
  16. 16.
    Yoo, S. J., Yoon, B. S., Kim, J. M., Song, J. M., Roh, S., You, S., and Yoon, H. S. (2005) Efficient culture system for human embryonic stem cells using autologous human embryonic stem cell-derived feeder cells. Exp. Mol. Med. 37, 399–407.PubMedGoogle Scholar
  17. 17.
    Barberi, T., Willis, L. M., Socci, N. D., and Studer, L. (2005) Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS Med. 2, e161.PubMedCrossRefGoogle Scholar
  18. 18.
    Trivedi, P. and Hematti, P. (2007) Simultaneous generation of CD34(+) primitive hematopoietic cells and CD73(+) mesenchymal stem cells from human embryonic stem cells cocultured with murine OP9 stromal cells. Exp. Hematol. 35, 146–154.PubMedCrossRefGoogle Scholar
  19. 19.
    Olivier, E. N., Rybicki, A. C., and Bouhassira, E. E. (2006) Differentiation of human embryonic stem cells into bipotent mesenchymal stem cells. Stem Cells. 24, 1914–1922.PubMedCrossRefGoogle Scholar
  20. 20.
    Lian, Q., Lye, E., Suan Yeo, K., Khia Way Tan, E., Salto-Tellez, M., Liu, T. M., et al. (2007) Derivation of clinically compliant MSCs from CD105+, CD24− differentiated human ESCs. Stem Cells. 25, 425–436.PubMedCrossRefGoogle Scholar
  21. 21.
    Trivedi, P. and Hematti, P. (2008) Derivation and immunological characterization of mesenchymal stromal cells from human embryonic stem cells. Exp. Hematol. 36, 350–359.PubMedGoogle Scholar
  22. 22.
    Hwang, N. S., Varghese, S., Zhang, Z., and Elisseeff, J. (2006) Chondrogenic differentiation of human embryonic stem cell-derived cells in arginine-glycine-aspartate-modified hydrogels. Tissue Eng. 12, 2695–2706.PubMedCrossRefGoogle Scholar
  23. 23.
    Hwang, N. S., Varghese, S., Lee, H. J., Zhang, Z., Ye, Z., Bae, J., et al. (2008) In vivo commitment and functional tissue regeneration using human embryonic stem cell-derived mesenchymal cells. Proc. Natl. Acad. Sci.USA. 105, 20641–20646.PubMedCrossRefGoogle Scholar
  24. 24.
    Bendall, S. C., Stewart, M. H., Menendez, P., George, D., Vijayaragavan, K., Werbowetski-Ogilvie, T., et al. (2007) IGF and FGF ­cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature. 448, 1015–1021.PubMedCrossRefGoogle Scholar
  25. 25.
    Barberi, T., Bradbury, M., Dincer, Z., Panagiotakos, G., Socci, N. D., and Studer, L. (2007) Derivation of engraftable skeletal myoblasts from human embryonic stem cells. Nat. Med. 13, 642–648.PubMedCrossRefGoogle Scholar
  26. 26.
    Lee, G., Kim, H., Elkabetz, Y., Al Shamy, G., Panagiotakos, G., Barberi, T., et al. (2007) Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat. Biotechnol. 25, 1468–1475.PubMedCrossRefGoogle Scholar
  27. 27.
    Gang, E. J., Bosnakovski, D., Figueiredo, C. A., Visser, J. W., and Perlingeiro, R. C. (2007) SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood. 109, 1743–1751.PubMedCrossRefGoogle Scholar
  28. 28.
    Cheng, L., Hammond, H., Ye, Z., Zhan, X., and Dravid, G. (2003) Human adult marrow cells support prolonged expansion of human embryonic stem cells in culture. Stem Cells. 21, 131–142.PubMedCrossRefGoogle Scholar
  29. 29.
    Wagner, W., Wein, F., Seckinger, A., Frankhauser, M., Wirkner, U., Krause, U., et al. (2005) Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp. Hematol. 33, 1402–1416.PubMedCrossRefGoogle Scholar
  30. 30.
    Karp, J. M., Ferreira, L. S., Khademhosseini, A. H., Kwon, A., Yeh, J., and Langer, R. S. (2006) Cultivation of human embryonic stem cells without the embryoid body step enhances osteogenesis in vitro. Stem Cells. 24, 835–843.PubMedCrossRefGoogle Scholar
  31. 31.
    Cao, T., Heng, B. C., Ye, C. P., Liu, H., Toh, W. S., Robson, P., et al. (2005) Osteogenic differentiation within intact human embryoid bodies result in a marked increase in osteocalcin secretion after 12 days of in vitro culture, and formation of morphologically distinct nodule-like structures. Tissue Cell. 37, 325–334.PubMedCrossRefGoogle Scholar
  32. 32.
    Woll, N. L., Heaney, J. D., and Bronson, S. K. (2006) Osteogenic nodule formation from single embryonic stem cell-derived progenitors. Stem Cells Dev. 15, 865–879.PubMedCrossRefGoogle Scholar
  33. 33.
    Bielby, R. C., Boccaccini, A. R., Polak, J. M., and Buttery, L. D. (2004) In vitro differentiation and in vivo mineralization of osteogenic cells derived from human embryonic stem cells. Tissue Eng. 10, 1518–1525.PubMedGoogle Scholar
  34. 34.
    Toh, W. S., Yang, Z., Liu, H., Heng, B. C., Lee, E. H., and Cao, T. (2007) Effects of culture conditions and bone morphogenetic protein 2 on extent of chondrogenesis from human embryonic stem cells. Stem Cells. 25, 950–960.PubMedCrossRefGoogle Scholar
  35. 35.
    Sottile, V., Thomson, A., and McWhir, J. (2003) In vitro osteogenic differentiation of human ES cells. Cloning Stem Cells. 5, 149–155.PubMedCrossRefGoogle Scholar
  36. 36.
    Alsberg, E., von Recum, H. A., and Mahoney, M. J. (2006) Environmental cues to guide stem cell fate decision for tissue engineering applications. Expert Opin. Biol. Ther. 6, 847–866.PubMedCrossRefGoogle Scholar
  37. 37.
    Makino, S., Fukuda, K., Miyoshi, S., Konishi, F., Kodama, H., Pan, J., et al. (1999) Cardio­myo­cytes can be generated from marrow stromal cells in vitro. J. Clin. Invest. 103, 697–705.PubMedCrossRefGoogle Scholar
  38. 38.
    Oswald, J., Boxberger, S., Jorgensen, B., Feldmann, S., Ehninger, G., Bornhauser, M., et al. (2004) Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells. 22, 377–384.PubMedCrossRefGoogle Scholar
  39. 39.
    Spees, J. L., Olson, S. D., Ylostalo, J., Lynch, P. J., Smith, J., Perry, A., et al. (2003) Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proc. Natl. Acad. Sci. USA. 100, 2397–2402.PubMedCrossRefGoogle Scholar
  40. 40.
    Schwartz, R. E., Reyes, M., Koodie, L., Jiang, Y., Blackstad M., Lund, T., et al. (2002) Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J. Clin. Invest. 109, 1291–1302.PubMedGoogle Scholar
  41. 41.
    Woodbury, D., Schwarz, E. J., Prockop, D. J., and Black, I. B. (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res. 61, 364–370.PubMedCrossRefGoogle Scholar
  42. 42.
    Tang, D. Q., Cao, L. Z., Burkhardt, B. R., Xia, C. Q., Litherland, S. A., Atkinson, M. A., et al. (2004) In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes. 53, 1721–1732.PubMedCrossRefGoogle Scholar
  43. 43.
    Phinney, D. G. and Prockop, D. J. (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells. 25, 2896–2902.PubMedCrossRefGoogle Scholar
  44. 44.
    Prockop, D. J. (2007) “Stemness” does not explain the repair of many tissues by mesenchymal stem/multipotent stromal cells (MSCs). Clin. Pharmacol. Ther. 82, 241–243.PubMedCrossRefGoogle Scholar
  45. 45.
    Chamberlain, G., Fox, J., Ashton, B., and Middleton, J. (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 25, 2739–2749.PubMedCrossRefGoogle Scholar
  46. 46.
    Caplan, A. I. (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J. Cell Physiol. 213, 341–347.PubMedCrossRefGoogle Scholar
  47. 47.
    Keating, A. (2006) Mesenchymal stromal cells. Curr. Opin. Hematol. 13, 419–425.PubMedCrossRefGoogle Scholar
  48. 48.
    Deans, R. J. and Moseley, A. B. (2000) Mesenchymal stem cells: biology and potential clinical uses. Exp. Hematol. 28, 875–884.PubMedCrossRefGoogle Scholar
  49. 49.
    Dazzi, F. and Horwood, N. J. (2007) Potential of mesenchymal stem cell therapy. Curr. Opin. Oncol. 19, 650–655.PubMedCrossRefGoogle Scholar
  50. 50.
    Uccelli, A., Pistoia, V., and Moretta, L. (2007) Mesenchymal stem cells: a new strategy for immunosuppression? Trends Immunol. 28, 219–226.PubMedCrossRefGoogle Scholar
  51. 51.
    Koc, O. N., Day, J., Nieder, M., Gerson, S. L., Lazarus, H. M., and Krivit, W. (2002) Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant. 30, 215–222.PubMedCrossRefGoogle Scholar
  52. 52.
    Horwitz, E. M., Prockop, D. J., Fitzpatrick, L. A., Koo, W. W., Gordon, P. L., Neel, M., et al. (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat. Med. 5, 309–313.PubMedCrossRefGoogle Scholar
  53. 53.
    Chen, S. L., Fang, W. W., Ye, F., Liu, Y. H., Qian, J., Shan, S. J., et al. (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am. J. Cardiol. 94, 92–95.PubMedCrossRefGoogle Scholar
  54. 54.
    Mazzini, L., Mareschi, K., Ferrero, I., Vassallo, E., Oliveri, G., Boccaletti, R., et al. (2006) Autologous mesenchymal stem cells: clinical applications in amyotrophic lateral sclerosis. Neurol. Res. 28, 523–526.PubMedCrossRefGoogle Scholar
  55. 55.
    Le Blanc, K., Frassoni, F., Ball, L., Locatelli, F., Roelofs, H., Lewis, I., et al. (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet. 371, 1579–1586.PubMedCrossRefGoogle Scholar
  56. 56.
    Taupin, P. (2006) OTI-010 Osiris Therapeutics/JCR Pharmaceuticals. Curr. Opin. Invest. Drugs. 7, 473–481.Google Scholar
  57. 57.
    Le Blanc, K. and Ringden, O. (2005) Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 11, 321–334.PubMedCrossRefGoogle Scholar
  58. 58.
    Stagg, J. and Galipeau, J. (2007) Immune plasticity of bone marrow-derived mesenchymal stromal cells. Handb. Exp. Pharmacol. 180, 45–66.PubMedCrossRefGoogle Scholar
  59. 59.
    Noel, D., Djouad, F., Bouffi, C., Mrugala, D., and Jorgensen, C. (2007) Multipotent mesenchymal stromal cells and immune tolerance. Leuk. Lymphoma. 48, 1283–1289.PubMedCrossRefGoogle Scholar
  60. 60.
    Nauta, A. J. and Fibbe, W. E. (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood. 110, 3499–3506.PubMedCrossRefGoogle Scholar
  61. 61.
    Giordano, A., Galderisi, U., and Marino, I. R. (2007) From the laboratory bench to the patient’s bedside: an update on clinical trials with mesenchymal stem cells. J. Cell Physiol. 211, 27–35.PubMedCrossRefGoogle Scholar
  62. 62.
    Le Blanc, K., Tammik, C., Rosendahl, K., Zetterberg, E., and Ringden, O. (2003) HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp. Hematol. 31, 890–896.PubMedCrossRefGoogle Scholar
  63. 63.
    Yen, B. L., Chang, C. J., Liu, K. J., Chen, Y. C., Hu, H. I., Bai, C. H., and Yen, M. L. (2009) Brief report – human embryonic stem cell-derived mesenchymal progenitors possess strong immunosuppressive effects toward natural killer cells as well as T lymphocytes. Stem Cells. 27, 451–456.PubMedCrossRefGoogle Scholar
  64. 64.
    Yamanaka, S. (2007) Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell. 1, 39–49.PubMedCrossRefGoogle Scholar
  65. 65.
    Dieterle, C. D., Hierl, F. X., Gutt, B., Arbogast, H., Meier, G. R., Veitenhansl, M., Hoffmann, J. N., and Landgraf, R. (2005) Insulin and islet autoantibodies after pancreas transplantation. Transpl. Int. 18, 1361–1365.PubMedCrossRefGoogle Scholar
  66. 66.
    Laughlin, E., Burke, G., Pugliese, A., Falk, B., and Nepom, G. (2008) Recurrence of autoreactive antigen-specific CD4+ T cells in autoimmune diabetes after pancreas transplantation. Clin. Immunol. 128, 23–30.PubMedCrossRefGoogle Scholar
  67. 67.
    Thomson, J. A. and Odorico, J. S. (2000) Human embryonic stem cell and embryonic germ cell lines. Trends. Biotechnol. 18, 53–57.PubMedCrossRefGoogle Scholar
  68. 68.
    Baker, M. (2008) FDA to vet embryonic stem cells’ safety. Nature. 452, 670.PubMedCrossRefGoogle Scholar
  69. 69.
    Dihne, M., Bernreuther, C., Hagel, C., Wesche, K. O., and Schachner, M. (2006) Embryonic stem cell-derived neuronally committed precursor cells with reduced teratoma formation after transplantation into the lesioned adult mouse brain. Stem Cells. 24, 1458–1466.PubMedCrossRefGoogle Scholar
  70. 70.
    Leor, J., Gerecht, S., Cohen, S., Miller, L., Holbova, R., Ziskind, A., Shachar, M., Feinberg, M. S, Guetta, E., and Itskovitz-Eldor, J. (2007) Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart. 93, 1278–1284.PubMedCrossRefGoogle Scholar
  71. 71.
    Cai, J., Yi, F. F., Yang, X. C., Lin, G. S., Jiang, H., Wang, T., et al. (2007) Transplantation of embryonic stem cell-derived cardiomyocytes improves cardiac function in infarcted rat hearts. Cytotherapy. 9, 283–291.PubMedCrossRefGoogle Scholar
  72. 72.
    Arnhold, S., Klein, H., Semkova, I., Addicks, K., and Schraermeyer, U. (2004) Neurally selected embryonic stem cells induce tumor formation after long-term survival following engraftment into the subretinal space. Invest. Ophthalmol. Vis. Sci. 45, 4251–4255.PubMedCrossRefGoogle Scholar
  73. 73.
    Rubio, D., Garcia-Castro, J., Martin, M. C., de la Fuente, R., Cigudosa, J. C., Lloyd, A. C., et al. (2005) Spontaneous human adult stem cell transformation. Cancer Res. 65, 3035–3039.PubMedGoogle Scholar
  74. 74.
    Wang, Y., Huso, D. L., Harrington, J., Kellner, J., Jeong, D. K., Turney, J., et al. (2005) Outgrowth of a transformed cell population derived from normal human BM mesenchymal stem cell culture. Cytotherapy. 7, 509–519.PubMedCrossRefGoogle Scholar
  75. 75.
    Tolar, J., Nauta, A. J., Osborn, M. J., Panoskaltsis Mortari, A., McElmurry, R. T., Bell, S., et al. (2007) Sarcoma derived from cultured mesenchymal stem cells. Stem Cells. 25, 371–379.PubMedCrossRefGoogle Scholar
  76. 76.
    Djouad, F., Plence, P., Bony, C., Tropel, P., Apparailly, F., Sany, J., et al. (2003) Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood. 102, 3837–3844.PubMedCrossRefGoogle Scholar
  77. 77.
    Karnoub, A. E., Dash, A. B., Vo, A. P., Sullivan, A., Brooks, M. W., Bell, G. W., et al. (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 449, 557–563PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Peiman Hematti
    • 1
  1. 1.Department of Medicine, School of Medicine and Public HealthUniversity of WisconsinMadisonUSA

Personalised recommendations