Assessing Blood–Cerebrospinal Fluid Barrier Permeability in the Rat Embryo

  • Norman R. SaundersEmail author
  • C. Joakim Ek
  • Mark D. Habgood
  • Pia Johansson
  • Shane Liddelow
  • Katarzyna M. Dziegielewska
Part of the Methods in Molecular Biology book series (MIMB, volume 686)


The rat is a useful model for studies of embryonic blood–CSF function in that the embryos are large enough to collect sufficient fluid samples for analysis and exteriorized embryos can be kept viable for several hours in order to conduct longer term experiments. Both quantitative and qualitative methods that are similar to those used in adult studies can be used to assess blood–CSF function in the rat embryo; however, there are technical aspects of these studies that are more challenging. The choice of the methods to be used depends largely on the question being asked. This chapter describes in detail the precise steps that need to be taken to keep rat embryos in a good physiological state while conducting the experiments, how to administer markers into the embryonic circulation, and how to sample blood and/or CSF from embryos. How to evaluate the results obtained is outlined at the end of each method, together with notes on some limitations that are inherent in developmental studies.

Key words

Choroid plexus Blood–CSF barrier Development Cerebrospinal fluid Rat embryo 


  1. 1.
    Johansson PA, Dziegielewska KM, Liddelow SA, Saunders NR (2008) The blood-CSF barrier explained: when development is not immaturity. Bioessays 30:237–48CrossRefPubMedGoogle Scholar
  2. 2.
    Fossan G, Cavanagh ME, Evans CAN, Malinowska DH, Møllgård K, Reynolds ML, Saunders NR (1985) CSF-brain permeability in the immature sheep fetus: a CSF-brain barrier. Dev Brain Res 18:113–24CrossRefGoogle Scholar
  3. 3.
    Møllgård K, Balslev Y, Lauritzen B, Saunders NR (1987) Cell junctions and membrane specializations in the ventricular zone (germinal matrix) of the developing sheep brain: a CSF-brain barrier. J Neurocytol 16:433–44CrossRefPubMedGoogle Scholar
  4. 4.
    Ek CJ, Habgood MD, Dziegielewska KM, Potter A, Saunders NR (2001) Permeability and route of entry for lipid-insoluble molecules across brain barriers in developing Monodelphis domestica. J Physiol 536:841–53CrossRefPubMedGoogle Scholar
  5. 5.
    Habgood MD, Sedgwick JE, Dziegielewska KM, Saunders NR (1992) A developmentally regulated blood-cerebrospinal fluid transfer mechanism for albumin in immature rats. J Physiol 456:181–92PubMedGoogle Scholar
  6. 6.
    Davson H, Welch K, Segal MB (1987). Physiology and pathophysiology of the cerebrospinal fluid. Churchill Livingstone, LondonGoogle Scholar
  7. 7.
    Liddelow S, Dziegielewska KM, Ek CJ, Johansson PA, Potter A, Saunders NR (2009) Cellular transfer of macromolecules across the developing choroid plexus of Monodelphis domestica. Eur J Neurosci 29:253–66CrossRefPubMedGoogle Scholar
  8. 8.
    Dziegielewska KM, Evans CAN, Malinowska DH, Møllgård K, Reynolds JM, Reynolds ML, Saunders NR (1979) Studies of the development of brain barrier systems to lipid insoluble molecules in fetal sheep. J Physiol 292:207–31PubMedGoogle Scholar
  9. 9.
    Dziegielewska KM, Habgood MD, Møllgård K, Stagaard M, Saunders NR (1991) Species-specific transfer of plasma albumin from blood into different cerebrospinal fluid compartments in the fetal sheep. J Physiol 439:215–37PubMedGoogle Scholar
  10. 10.
    Stonestreet BS, Patlak CS, Pettigrew KD, Reilly CB, Cserr HF (1996) Ontogeny of blood-brain barrier function in ovine fetuses, lambs, and adults. Am J Physiol 271:R1594–601PubMedGoogle Scholar
  11. 11.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  12. 12.
    Mancini G, Carbonara AO, Heremans JF (1965) Immunochemical quantification of antigens by single radial immunodiffusion. Int J Immunochem 2:235–54Google Scholar
  13. 13.
    Johansson PA, Dziegielewska KM, Ek CJ, Habgood MD, Liddelow SA, Potter AM, Stolp H.B, Saunders NR (2006) Blood-CSF barrier function in the rat embryo. Eur J Neurosci 24:65–76CrossRefPubMedGoogle Scholar
  14. 14.
    Rawson RA (1943) The binding of T-1824 and structurally related diazo dyes by the plasma proteins. Am J Physiol 138:708–17Google Scholar
  15. 15.
    Dallal MM, Chang S-W (1994) Evans blue dye in the assessment of permeability-surface area product in perfused rat lungs. J Appl Physiol 77:1030–5PubMedGoogle Scholar
  16. 16.
    Butler H, Juurlink BHJ (1987) An atlas for staging mammalian and chick embryos. CRC, Boca RatonGoogle Scholar
  17. 17.
    Saunders NR (1992) Ontogenic development of brain barrier mechanism. In: Bradbury MWB (ed) Handbook of experimental pharmacology: physiology and pharmacology of the blood-brain barrier. Springer, Berlin, pp 327–369Google Scholar
  18. 18.
    Wakai S, Hirokawa N (1981) Development of blood-cerebrospinal fluid barrier to horseradish peroxidase in the avian choroidal epithelium. Cell Tissue Res 214:271–8CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Norman R. Saunders
    • 1
    Email author
  • C. Joakim Ek
    • 1
  • Mark D. Habgood
    • 1
  • Pia Johansson
    • 2
  • Shane Liddelow
    • 1
  • Katarzyna M. Dziegielewska
    • 1
  1. 1.Department of PharmacologyUniversity of MelbourneParkvilleAustralia
  2. 2.Institute for Stem Cell ResearchHelmholtz Zentrum MünchenNeuherbergGermany

Personalised recommendations