Quantification of miRNA Abundance in Single Cells Using Locked Nucleic Acid-FISH and Enzyme-Labeled Fluorescence

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 680)

Abstract

The ability to quantify miRNA abundance at the single-cell level and image its spatial distribution could lead to unique insight into the biological roles of miRNAs and miRNA-associated gene regulatory networks. This protocol describes a method for quantitatively imaging miRNAs in single cells using fluorescence in situ hybridization (FISH). The method combines the unique miRNA recognition properties of locked nucleic acid (LNA) with the signal amplification technology known as enzyme-labeled fluorescence (ELF). Although both approaches have previously been shown to increase detection specificity and/or sensitivity in FISH, combining these techniques into one protocol allows for single molecule detection. Specifically, individual miRNAs are identified as bright, photostable fluorescent spots. The dynamic range was found to span over three orders of magnitude and the average miRNA copy number per cell was within 17.5% of measurements acquired by quantitative RT-PCR.

Key words

miRNA fluorescence in situ hybridization (FISH) locked nucleic acid (LNA) enzyme-labeled fluorescence (ELF) single molecule detection 

Notes

Acknowledgments

The authors thank Dr. Steven Bartush from Exiqon for LNA probe design. This work was supported by the National Institutes of Health (NCI) R21-CA125088 and R21-CA116102; the National Science Foundation BES-0616031; and the American Cancer Society RSG-07-005-01.

References

  1. 1.
    Lewis, B. P., Burge, C. B., and Bartel, D. P. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20.PubMedCrossRefGoogle Scholar
  2. 2.
    Kim, V. N. (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol. 6, 376–85.PubMedCrossRefGoogle Scholar
  3. 3.
    Griffiths-Jones, S. (2004) The microRNA Registry. Nucleic Acids Res. 32, D109–11.PubMedCrossRefGoogle Scholar
  4. 4.
    Chang, T. C. and Mendell, J. T. (2007) MicroRNAs in vertebrate physiology and human disease. Annu. Rev. Genomics Hum. Genet. 8, 215–39.PubMedCrossRefGoogle Scholar
  5. 5.
    Hume, D. A. (2000) Probability in transcriptional regulation and its implications for leukocyte differentiation and inducible gene expression. Blood 96, 2323–8.PubMedGoogle Scholar
  6. 6.
    Kepler, T. B. and Elston, T. C. (2001) Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys. J. 81, 3116–36.PubMedCrossRefGoogle Scholar
  7. 7.
    Ross, I. L., Browne, C. M., and Hume, D. A. (1994) Transcription of individual genes in eukaryotic cells occurs randomly and infrequently. Immunol. Cell Biol. 72, 177–85.PubMedCrossRefGoogle Scholar
  8. 8.
    Swain, P. S., Elowitz, M. B., and Siggia, E. D. (2002) Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl. Acad. Sci. USA 99, 12795–800.PubMedCrossRefGoogle Scholar
  9. 9.
    Kloosterman, W. P., Wienholds, E., de Bruijn, E., Kauppinen, S., and Plasterk, R. H. (2006) In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat. Methods 3, 27–29.PubMedCrossRefGoogle Scholar
  10. 10.
    Nelson, P. T., Baldwin, D. A., Kloosterman, W. P., Kauppinen, S., Plasterk, R. H., and Mourelatos, Z. (2005) RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. RNA. 12, 187–91.PubMedCrossRefGoogle Scholar
  11. 11.
    Politz, J. C., Zhang, F., and Pederson, T. (2006) MicroRNA-206 colocalizes with ribosome-rich regions in both the nucleolus and cytoplasm of rat myogenic cells. Proc. Natl. Acad. Sci. USA 103, 18957–62.PubMedCrossRefGoogle Scholar
  12. 12.
    Silahtaroglu, A. N., Nolting, D., Dyrskjot, L., Berezikov, E., Moller, M., Tommerup, N., and Kauppinen, S. (2007) Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification. Nat. Protoc. 2, 2520–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Wienholds, E., Kloosterman, W. P., Miska, E., Alvarez-Saavedra, E., Berezikov, E., de Bruijn, E., Horvitz, H. R., Kauppinen, S., and Plasterk, R. H. (2005) MicroRNA expression in zebrafish embryonic development. Science 309, 310–1.PubMedCrossRefGoogle Scholar
  14. 14.
    Chou, L. S., Meadows, C., Wittwer, C. T., and Lyon, E. (2005) Unlabeled oligonucleotide probes modified with locked nucleic acids for improved mismatch discrimination in genotyping by melting analysis. Biotechniques 39, 644, 646, 648 passim.PubMedCrossRefGoogle Scholar
  15. 15.
    Johnson, M. P., Haupt, L. M., and Griffiths, L. R. (2004) Locked nucleic acid (LNA) single nucleotide polymorphism (SNP) genotype analysis and validation using real-time PCR. Nucleic Acids Res. 32, e55.PubMedCrossRefGoogle Scholar
  16. 16.
    Valoczi, A., Hornyik, C., Varga, N., Burgyan, J., Kauppinen, S., and Havelda, Z. (2004) Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res. 32, e175.PubMedCrossRefGoogle Scholar
  17. 17.
    You, Y., Moreira, B. G., Behlke, M. A., and Owczarzy, R. (2006) Design of LNA probes that improve mismatch discrimination. Nucleic Acids Res. 34, e60.PubMedCrossRefGoogle Scholar
  18. 18.
    Lu, J. and Tsourkas, A. (2009) Imaging individual microRNAs in single mammalian cells in situ. Nucleic Acids Res. 37, e100.PubMedCrossRefGoogle Scholar
  19. 19.
    Paragas, V. B., Zhang, Y. Z., Haugland, R. P., and Singer, V. L. (1997) The ELF-97 alkaline phosphatase substrate provides a bright, photostable, fluorescent signal amplification method for FISH. J. Histochem. Cytochem. 45, 345–57.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2011

Authors and Affiliations

  1. 1.Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations