Utilization of SSCprofiler to Predict a New miRNA Gene

  • Anastasis Oulas
  • Panayiota Poirazi
Part of the Methods in Molecular Biology book series (MIMB, volume 676)


Experimental identification provides a valuable yet slow and expensive method for predicting novel miRNA genes. With the advent of computational procedures, it is now possible to capture characteristic features of miRNA biogenesis in an in silico model, resulting thereafter in the fast and inexpensive prediction of multiple novel miRNA gene candidates. These computational tools provide valuable clues to experimentalists, allowing them to narrow down their search space, making experimental verification less time consuming and less costly. Furthermore, the computational model itself can provide biological information as to which are the dominant features that characterize these regulatory units. Moreover, large-scale, high-throughput techniques, such as deep sequencing and tiling arrays, require computational methods to analyze this vast amount of data. Computational miRNA gene prediction tools are often used in synergy with high-throughput methods, aiding in the discovery of putative miRNA genes. This chapter focuses on a recently developed computational tool (SSCprofiler) for identifying miRNA genes and provides an overview of the methodology undertaken by this tool, and defines a stepwise guideline on how to utilize SSCprofiler to predict novel miRNAs in the human genome.

Key words

Hidden Markov model Human microRNA prediction Expression data Web tool 



This work was supported by the action 8.3.1 (Reinforcement Program of Human Research Manpower – “PENED 2003”, [03ED842]) of the operational program “competitiveness” of the Greek General Secretariat for Research and Technology, a Marie Curie Fellowship of the European Commission [PIOF-GA-2008-219622] and the National Science Foundation [NSF 0515357].


  1. 1.
    Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell 75, 843–854.PubMedCrossRefGoogle Scholar
  2. 2.
    Huttenhofer, A., and Vogel, J. (2006) Experi­mental approaches to identify non-coding RNAs, Nucleic Acids Res 34, 635–646.PubMedCrossRefGoogle Scholar
  3. 3.
    Khvorova, A., Reynolds, A., and Jayasena, S. D. (2003) Functional siRNAs and miRNAs exhibit strand bias, Cell 115, 209–216.PubMedCrossRefGoogle Scholar
  4. 4.
    Lee, Y., Jeon, K., Lee, J. T., Kim, S., and Kim, V. N. (2002) MicroRNA maturation: stepwise processing and subcellular localization, EMBO J 21, 4663–4670.PubMedCrossRefGoogle Scholar
  5. 5.
    Lim, L. P., Glasner, M. E., Yekta, S., Burge, C. B., and Bartel, D. P. (2003) Vertebrate microRNA genes, Science 299, 1540.PubMedCrossRefGoogle Scholar
  6. 6.
    Helvik, S. A., Snove, O., Jr., and Saetrom, P. (2006) Reliable prediction of Drosha processing sites improves microRNA gene prediction, Bioinformatics 23, 142–149.PubMedCrossRefGoogle Scholar
  7. 7.
    Hertel, J., and Stadler, P. F. (2006) Hairpins in a Haystack: recognizing microRNA precursors in comparative genomics data, Bioinformatics 22, e197–e202.PubMedCrossRefGoogle Scholar
  8. 8.
    Lim, L. P., Lau, N. C., Weinstein, E. G., Abdelhakim, A., and Yekta, S. (2003b) The microRNAs of Caenorhabditis elegans, Genes Dev 16, 991–1008.CrossRefGoogle Scholar
  9. 9.
    Sewer, A., Paul, N., Landgraf, P., Aravin, A., Pfeffer, S., Brownstein, M. J., Tuschl, T., van Nimwegen, E., and Zavolan, M. (2005) Identification of clustered microRNAs using an ab initio prediction method, BMC Bioin-formatics 6, 267–281.PubMedCrossRefGoogle Scholar
  10. 10.
    Yousef, M., Nebozhyn, M., Shatkay, H., Kanterakis, S., Showe, L. C., and Showe, M. K. (2006) Combining multi-species genomic data for microRNA identification using a Naive Bayes classifier, Bioinformatics 22, 1325–1334.PubMedCrossRefGoogle Scholar
  11. 11.
    Oulas, A., Boutla, A., Gkirtzou, K., Reczko, M., Kalantidis, K., and Poirazi, P. (2009) Prediction of novel microRNA genes in cancer-associated genomic regions – a combined computational and experimental approach, Nucleic Acids Res 37, 3276–3287.PubMedCrossRefGoogle Scholar
  12. 12.
    Eddy, S. R. (1998) Profile hidden Markov models, Bioinformatics 14, 755–763.PubMedCrossRefGoogle Scholar
  13. 13.
    Hofacker, I. L. (2003) Vienna RNA secondary structure server, Nucleic Acids Res 31, 3429–3431.PubMedCrossRefGoogle Scholar
  14. 14.
    Berezikov, E., Guryev, V., van de Belt, J., Wienholds, E., Plasterk, R. H., and Cuppen, E. (2005) Phylogenetic shadowing and computational identification of human microRNA genes, Cell 120, 21–24.PubMedCrossRefGoogle Scholar
  15. 15.
    Nam, J. W., Shin, K. R., Han, J., Lee, Y., Kim, V. N., and Zhang, B. T. (2005) Human microRNA prediction through a probabilistic co-learning model of sequence and structure, Nucleic Acid Res 33, 3570–3581.PubMedCrossRefGoogle Scholar
  16. 16.
    Friedlander, M. R., Chen, W., Adamidi, C., Maaskola, J., Einspanier, R., Knespel, S., and Rajewsky, N. (2008) Discovering microRNAs from deep sequencing data using miRDeep, Nat Biotechnol 26, 407–415.PubMedCrossRefGoogle Scholar
  17. 17.
    Kapranov, P., Cheng, J., Dike, S., Nix, D. A., Duttagupta, R., Willingham, A. T., Stadler, P. F., Hertel, J., Hackermuller, J., Hofacker, I. L., Bell, I., Cheung, E., Drenkow, J., Dumais, E., Patel, S., Helt, G., Ganesh, M., Ghosh, S., Piccolboni, A., Sementchenko, V., Tammana, H., and Gingeras, T. R. (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription, Science 316, 1484–1488.PubMedCrossRefGoogle Scholar
  18. 18.
    Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., Pfeffer, S., Rice, A., Kamphorst, A. O., Landthaler, M., Lin, C., Socci, N. D., Hermida, L., Fulci, V., Chiaretti, S., Foa, R., Schliwka, J., Fuchs, U., Novosel, A., Muller, R. U., Schermer, B., Bissels, U., Inman, J., Phan, Q., Chien, M., Weir, D. B., Choksi, R., De Vita, G., Frezzetti, D., Trompeter, H. I., Hornung, V., Teng, G., Hartmann, G., Palkovits, M., Di Lauro, R., Wernet, P., Macino, G., Rogler, C. E., Nagle, J. W., Ju, J., Papavasiliou, F. N., Benzing, T., Lichter, P., Tam, W., Brownstein, M. J., Bosio, A., Borkhardt, A., Russo, J. J., Sander, C., Zavolan, M., and Tuschl, T. (2007) A mammalian microRNA expression atlas based on small RNA library sequencing, Cell 129, 1401–1414.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Anastasis Oulas
    • 1
  • Panayiota Poirazi
    • 2
  1. 1.Institute for Molecular Biology and Biotechnology (IMBB)Foundation for Research and Technology-Hellas (FORTH)HeraklionGreece
  2. 2.Computational Biology Laboratory, Institute for Molecular Biology and Biotechnology (IMBB)Foundation for Research and Technology-Hellas (FORTH)HeraklionGreece

Personalised recommendations