Computational Biology of Transcription Factor Binding pp 419-441

Part of the Methods in Molecular Biology book series (MIMB, volume 674)

Computational Methods for Analyzing Dynamic Regulatory Networks

Protocol

Abstract

Regulatory and other networks in the cell change in a highly dynamic way over time and in response to internal and external stimuli. While several different types of high-throughput experimental procedures are available to study systems in the cell, most only measure static properties of such networks. Information derived from sequence data is inherently static, and most interaction data sets are measured in a static way as well. In this chapter we discuss one of the few abundant sources for temporal information, time series expression data. We provide an overview of the methods suggested for clustering this type of data to identify functionally related genes. We also discuss methods for inferring causality and interactions using lagged correlations and regression analysis. Finally, we present methods for combining time series expression data with static data to reconstruct dynamic regulatory networks. We point to software tools implementing the methods discussed in this chapter. As more temporal measurements become available, the importance of analyzing such data and of combining it with other types of data will greatly increase.

Key words

Gene expression causality clustering data integration time series 

References

  1. 1.
    Gasch, A.P., Spellman, P.T., and Kao, C.M. et al. (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11, 4241–4257.PubMedGoogle Scholar
  2. 2.
    Nau, G.J., Richmond, J.F.L., Schlesinger, A. et al. (2002) Human macrophage activation programs induced by bacterial pathogens. Proc Natl Acad Sci USA 99, 1503–1508.PubMedCrossRefGoogle Scholar
  3. 3.
    Bar-Joseph, Z., Siegfried, Z., Brandeis, M. et al. (2008) Genome-wide transcriptional analysis of the human cell cycle identifies genes differentially regulated in normal and cancer cells. Proc Natl Acad Sci USA 105, 955–960.PubMedCrossRefGoogle Scholar
  4. 4.
    Xie, X., Lu, J., Kulbokas, E.J. et al. (2005) Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals, Nature 434, 338–345.PubMedCrossRefGoogle Scholar
  5. 5.
    Harbison, C.T., Gordon, D.B., Lee, T.I. et al. (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104.PubMedCrossRefGoogle Scholar
  6. 6.
    Krogan, N.J., Cagney, G., Yu, H. et al. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643.PubMedCrossRefGoogle Scholar
  7. 7.
    Gavin, A., Aloy, P., Grandi, P. et al. (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636.PubMedCrossRefGoogle Scholar
  8. 8.
    Tan, L.P., Seinen, E., Duns, G. et al. (2009) A high throughput experimental approach to identify miRNA targets in human cells. Nucleic Acids Res 2009, gkp715.Google Scholar
  9. 9.
    Bar-Joseph, Z. (2004) Analyzing time series gene expression data. Bioinformatics 20, 2493–2503.PubMedCrossRefGoogle Scholar
  10. 10.
    Eisen, M.B., Spellman, P.T., Brown, P.O. et al. (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95, 14863–14868.PubMedCrossRefGoogle Scholar
  11. 11.
    Ernst, J., Nau, G.J., and Bar-Joseph, Z. (2005) Clustering short time series gene expression data. Bioinformatics 21, i159–i168.PubMedCrossRefGoogle Scholar
  12. 12.
    Tavazoie, S., Hughes, J.D., Campbell, M.J. et al. (1999) Systematic determination of genetic network architecture. Nat Genet 22, 281–285.PubMedCrossRefGoogle Scholar
  13. 13.
    Alter, O., Brown, P.O., and Botstein, D. (2000) Singular value decomposition for genome-wide expression data processing and modeling. Proc Natl Acad Sci USA 97, 10101–10106.PubMedCrossRefGoogle Scholar
  14. 14.
    Holter, N.S., Mitra, M., Maritan, A. et al. (2000) Fundamental patterns underlying gene expression profiles: simplicity from complexity. Proc Natl Acad Sci USA 97, 8409–8414.PubMedCrossRefGoogle Scholar
  15. 15.
    Lee, S., and Batzoglou, S. (2003) Application of independent component analysis to microarrays. Genome Biol 4, R76.PubMedCrossRefGoogle Scholar
  16. 16.
    Frigyesi, A., Veerla, S., Lindgren, D. et al. (2006) Independent component analysis reveals new and biologically significant structures in micro array data. BMC Bioinformatics 7, 290.PubMedCrossRefGoogle Scholar
  17. 17.
    Bar-Joseph, Z., Gerber, G., Simon, I. et al. (2003) Comparing the continuous representation of time-series expression profiles to identify differentially expressed genes. Proc Natl Acad Sci USA 100, 10146–10151.PubMedCrossRefGoogle Scholar
  18. 18.
    Magni, P., Ferrazzi, F., Sacchi, L. et al. (2008) TimeClust: a clustering tool for gene expression time series. Bioinformatics 24, 430–432.PubMedCrossRefGoogle Scholar
  19. 19.
    Liu, H., Tarima, S., Borders, A. et al. (2005) Quadratic regression analysis for gene discovery and pattern recognition for non-cyclic short time-course microarray experiments. BMC Bioinformatics 6, 106.PubMedCrossRefGoogle Scholar
  20. 20.
    Wang, L., Ramoni, M., and Sebastiani, P. (2006) Clustering short gene expression profiles. In: Research in Computational Molecular Biology. pp. 60–68.Google Scholar
  21. 21.
    Kim, J., and Kim, J.H. (2007) Difference-based clustering of short time-course microarray data with replicates. BMC Bioinformatics 8, 253.PubMedCrossRefGoogle Scholar
  22. 22.
    Déjean, S., Martin, P.G.P., Baccini, A. et al. (2007) Clustering time-series gene expression data using smoothing spline derivatives. EURASIP J Bioinform Syst Biol 2007, 70561.CrossRefGoogle Scholar
  23. 23.
    Li, C., Yuan, Y., and Wilson, R. (2008) An unsupervised conditional random fields approach for clustering gene expression time series. Bioinformatics 24, 2467–2473.PubMedCrossRefGoogle Scholar
  24. 24.
    Schliep, A., Schonhuth, A., and Steinhoff, C. (2003) Using hidden Markov models to analyze gene expression time course data. Bioinformatics 19, i255–i263.PubMedCrossRefGoogle Scholar
  25. 25.
    Schliep, A., Steinhoff, C., and Schonhuth, A. (2004) Robust inference of groups in gene expression time-courses using mixtures of HMMs. Bioinformatics 20, i283–i289.PubMedCrossRefGoogle Scholar
  26. 26.
    Ramoni, M.F., Sebastiani, P., and Kohane, I.S. (2002) Cluster analysis of gene expression dynamics. Proc Natl Acad Sci USA 99, 9121–9126.PubMedCrossRefGoogle Scholar
  27. 27.
    Zhou, C., and Wakefield, J. (2006) A Bayesian mixture model for partitioning gene expression data. Biometrics 62, 515–525.PubMedCrossRefGoogle Scholar
  28. 28.
    Ernst, J., and Bar-Joseph, Z. (2006) STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics 7, 191.PubMedCrossRefGoogle Scholar
  29. 29.
    Anand, A., Suganthan, P., and Deb, K. (2007) A novel fuzzy and multiobjective evolutionary algorithm based gene assignment for clustering short time series expression data. In: IEEE Congress on Evolutionary Computation 2007. pp. 297–304.Google Scholar
  30. 30.
    Workman, C.T., Mak, H.C., McCuine, S. et al. (2006) A systems approach to mapping DNA damage response pathways. Science 312, 1054–1059.PubMedCrossRefGoogle Scholar
  31. 31.
    Yeang, C., Mak, H.C., McCuine, S. et al. (2005) Validation and refinement of gene-regulatory pathways on a network of physical interactions. Genome Biol 6, R62.PubMedCrossRefGoogle Scholar
  32. 32.
    Qian, J., Dolled-Filhart, M., Lin, J. et al. (2001) Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions. J Mol Biol 314, 1053–1066.PubMedCrossRefGoogle Scholar
  33. 33.
    Schmitt, W.A., Raab, R.M., and Stephanopoulos, G. (2004) Elucidation of gene interaction networks through time-lagged correlation analysis of transcriptional data. Genome Res 14, 1654–1663.PubMedCrossRefGoogle Scholar
  34. 34.
    Balasubramaniyan, R., Hullermeier, E., Weskamp, N. et al. (2005) Clustering of gene expression data using a local shape-based similarity measure. Bioinformatics 21, 1069–1077.PubMedCrossRefGoogle Scholar
  35. 35.
    Pe’er, D., Regev, A., Elidan, G. et al. (2001) Inferring subnetworks from perturbed expression profiles. Bioinformatics 17, S215–S224.PubMedCrossRefGoogle Scholar
  36. 36.
    Hartemink, A.J. (2005) Reverse engineering gene regulatory networks. Nat Biotechnol 23, 554–555.PubMedCrossRefGoogle Scholar
  37. 37.
    Ong, I.M., Glasner, J.D., and Page, D. (2002) Modelling regulatory pathways in E. coli from time series expression profiles. Bioinformatics 18, S241–S248.PubMedCrossRefGoogle Scholar
  38. 38.
    Perrin, B., Ralaivola, L., Mazurie, A. et al. (2003) Gene networks inference using dynamic Bayesian networks. Bioinformatics 19, ii138–ii148.PubMedCrossRefGoogle Scholar
  39. 39.
    Kim, S., Imoto, S., and Miyano, S. (2004) Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems 75, 57–65.PubMedCrossRefGoogle Scholar
  40. 40.
    de Hoon, M., Imoto, S., and Miyano, S. (2009) Inferring gene regulatory networks from time-ordered gene expression data using differential equations. In: Discovery Science. pp. 283–288. Springer, Berlin/Heidelberg.Google Scholar
  41. 41.
    Shermin, A., and Orgun, M.A. (2009) Using dynamic Bayesian networks to infer gene regulatory networks from expression profiles. In: Proceedings of the 2009 ACM Symposium on Applied Computing. pp. 799–803. ACM, Honolulu, Hawaii.Google Scholar
  42. 42.
    Zou, M., and Conzen, S.D. (2005) A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21, 71–79.PubMedCrossRefGoogle Scholar
  43. 43.
    Ahmed, A., and Xing, E.P. (2009) Recovering time-varying networks of dependencies in social and biological studies. Proc Natl Acad Sci USA 106, 11878–11883.PubMedCrossRefGoogle Scholar
  44. 44.
    Spellman, P.T., Sherlock, G., Zhang, M.Q. et al. (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9, 3273–3297.PubMedGoogle Scholar
  45. 45.
    Lee, H.K., Hsu, A.K., Sajdak, J. et al. (2004) Coexpression analysis of human genes across many microarray data sets. Genome Res 14, 1085–1094.PubMedCrossRefGoogle Scholar
  46. 46.
    Aach, J., and Church, G.M. (2001) Aligning gene expression time series with time warping algorithms. Bioinformatics 17, 495–508.PubMedCrossRefGoogle Scholar
  47. 47.
    Bar-Joseph, Z., Gerber, G.K., Gifford, D.K. et al. (2003) Continuous representations of time-series gene expression data. J Comput Biol 10, 341–356.PubMedCrossRefGoogle Scholar
  48. 48.
    Smith, A.A., Vollrath, A., Bradfield, C.A. et al. (2008) Similarity queries for temporal toxicogenomic expression profiles. PLoS Comput Biol 4, e1000116.PubMedCrossRefGoogle Scholar
  49. 49.
    Lin, T., Kaminski, N., and Bar-Joseph, Z. (2008) Alignment and classification of time series gene expression in clinical studies. Bioinformatics 24, i147–i155.PubMedCrossRefGoogle Scholar
  50. 50.
    Wilczynski, B., and Tiuryn, J. (2007) Reconstruction of mammalian cell cycle regulatory network from microarray data using stochastic logical networks. In: Computational Methods in Systems Biology. pp. 121–135.Google Scholar
  51. 51.
    Shi, Y., Mitchell, T., and Bar-Joseph, Z. (2007) Inferring pairwise regulatory relationships from multiple time series datasets. Bioinformatics 23, 755–763.PubMedCrossRefGoogle Scholar
  52. 52.
    The ENCODE Project Consortium. (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816.CrossRefGoogle Scholar
  53. 53.
    Kundaje, A., Middendorf, M., Gao, F. et al. (2005) Combining sequence and time series expression data to learn transcriptional modules. IEEE ACM Trans Comput Biol Bioinform 2, 194–202.CrossRefGoogle Scholar
  54. 54.
    Ramsey, S.A., Klemm, S.L., Zak, D.E. et al. (2008) Uncovering a macrophage transcriptional program by integrating evidence from motif scanning and expression dynamics. PLoS Comput Biol 4, e1000021.PubMedCrossRefGoogle Scholar
  55. 55.
    Bonneau, R., Reiss, D., Shannon, P. et al. (2006) The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol 7, R36.PubMedCrossRefGoogle Scholar
  56. 56.
    Madar, A., Greenfield, A., Oster, H. et al. (2009) The Inferelator 2.0: a scalable framework for reconstruction of dynamic regulatory network models. In: Proceedings of the 31st Annual International Conference of the IEEE EMBS. Minneapolis, MN.Google Scholar
  57. 57.
    Luscombe, N.M., Madan Babu, M., Yu, H. et al. (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431, 308–312.PubMedCrossRefGoogle Scholar
  58. 58.
    Chawade, A., Brautigam, M., Lindlof, A. et al. (2007) Putative cold acclimation pathways in Arabidopsis thaliana identified by a combined analysis of mRNA co-expression patterns, promoter motifs and transcription factors. BMC Genomics 8, 304.PubMedCrossRefGoogle Scholar
  59. 59.
    Wu, W., and Li, W. (2008) Systematic identification of yeast cell cycle transcription factors using multiple data sources. BMC Bioinformatics 9, 522.PubMedCrossRefGoogle Scholar
  60. 60.
    Lin, L., Lee, H., Li, W. et al. (2005) Dynamic modeling of cis-regulatory circuits and gene expression prediction via cross-gene identification. BMC Bioinformatics 6, 258.PubMedCrossRefGoogle Scholar
  61. 61.
    Liao, J.C., Boscolo, R., Yang, Y. et al. (2003) Network component analysis: reconstruction of regulatory signals in biological systems. Proc Natl Acad Sci USA 100, 15522–15527.PubMedCrossRefGoogle Scholar
  62. 62.
    Tran, L.M., Brynildsen, M.P., Kao, K.C. et al. (2005) gNCA: a framework for determining transcription factor activity based on transcriptome: identifiability and numerical implementation. Metab Eng 7, 128–141.PubMedCrossRefGoogle Scholar
  63. 63.
    Galbraith, S.J., Tran, L.M., and Liao, J.C. (2006) Transcriptome network component analysis with limited microarray data. Bioinformatics 22, 1886–1894.PubMedCrossRefGoogle Scholar
  64. 64.
    Cokus, S., Rose, S., Haynor, D. et al. (2006) Modelling the network of cell cycle transcription factors in the yeast Saccharomyces cerevisiae. BMC Bioinformatics 7, 381.PubMedCrossRefGoogle Scholar
  65. 65.
    Xiao, Y., and Segal, M.R. (2009) Identification of yeast transcriptional regulation networks using multivariate random forests. PLoS Comput Biol 5, e1000414.PubMedCrossRefGoogle Scholar
  66. 66.
    Bernard, A., and Hartemink, A.J. (2005) Informative structure priors: joint learning of dynamic regulatory networks from multiple types of data. Pac Symp Biocomput 2005, 459–470.Google Scholar
  67. 67.
    Sanguinetti, G., Lawrence, N.D., and Rattray, M. (2006) Probabilistic inference of transcription factor concentrations and gene-specific regulatory activities. Bioinformatics 22, 2775–2781.PubMedCrossRefGoogle Scholar
  68. 68.
    Shi, Y., Klutstein, M., Simon, I. et al. (2009) A combined expression-interaction model for inferring the temporal activity of transcription factors. J Comput Biol 16, 1035–1049.PubMedCrossRefGoogle Scholar
  69. 69.
    Ernst, J., Vainas, O., Harbison, C.T. et al. (2007) Reconstructing dynamic regulatory maps. Mol Syst Biol 3, 74.PubMedCrossRefGoogle Scholar
  70. 70.
    Ernst, J., Beg, Q.K., Kay, K.A. et al. (2008) A semi-supervised method for predicting transcription factor-gene interactions in Escherichia coli. PLoS Comput Biol 4, e1000044.PubMedCrossRefGoogle Scholar
  71. 71.
    Vu, T.T., and Vohradsky, J. (2009) Inference of active transcriptional networks by integration of gene expression kinetics modeling and multisource data. Genomics 93, 426–433.PubMedCrossRefGoogle Scholar
  72. 72.
    Reeder, C.C. (2008) A novel computational method for inferring dynamic genetic regulatory trajectories. Thesis, Massachusetts Institute of Technology.Google Scholar
  73. 73.
    Frey, B.J., and Dueck, D. (2007) Clustering by passing messages between data points. Science 315, 972–976.PubMedCrossRefGoogle Scholar
  74. 74.
    Amit, I., Garber, M., Chevrier, N. et al. (2009) Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science 326, 257–263.PubMedCrossRefGoogle Scholar
  75. 75.
    Lu, R., Markowetz, F., Unwin, R.D. et al. (2009) Systems-level dynamic analyses of fate change in murine embryonic stem cells. Nature 462, 358–362.PubMedCrossRefGoogle Scholar
  76. 76.
    Philippar, U., Schratt, G., Dieterich, C. et al. (2004) The SRF target gene Fhl2 antagonizes RhoA/MAL-dependent activation of SRF. Mol Cell 16, 867–880.PubMedCrossRefGoogle Scholar
  77. 77.
    Segal, E., Shapira, M., Regev, A. et al. (2003) Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 34, 166–176.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Computer Science DepartmentCarnegie Mellon UniversityPittsburghUSA
  2. 2.Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUSA

Personalised recommendations