Detecting Protein–Small Molecule Interactions Using Fluorous Small-Molecule Microarrays

  • Arturo J. Vegas
  • Angela N. Koehler
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 669)

Abstract

General binding assays involving microarrays of small molecules can be used to identify small molecule ligands for nearly any protein, even in the absence of knowledge about protein structure or function. Several suitable methods for manufacturing small molecule microarrays (SMMs) exist and different immobilization methods may be more or less preferable for any given application. Here, we describe a protocol for noncovalent and homogenous capture of small molecules using fluorous interactions between small molecules containing fluorocarbon tags and fluorocarbon-coated glass surfaces. These arrays are especially useful for applications that require display of compounds in a specific orientation such as screening biased libraries.

Key words

Small molecule microarrays Fluorous Noncovalent attachment Homogenous display HDAC SAHA Structure-binding relationships 

Notes

Acknowledgments

The authors would like to thank Professor Stuart Schreiber, Dr. James Bradner, Dr. Weiping Tang, Olivia McPherson, Edward F. Greenberg, Dr. Ralph Mazitschek, Dr. Carlos Tassa, Dr. Marvin Yu, and Dr. Philip Yeske for providing materials, technical support, or advice that was relevant to developing this protocol. Work described herein was funded in whole or in part with Federal funds from the National Cancer Institute’s Initiative for Chemical Genetics, National Institutes of Health, under contract no. N01-CO-12400.

References

  1. 1.
    Stanton, B. Z., Peng, L. F., Maloof, N., Nakai, K., Wang, X., Duffner, J. L., Taveras, K. M., Hyman, J. M., Lee, S. W., Koehler, A. N., Chen, J. K., Fox, J. L., Mandinova, A., and Schreiber, S. L. (2009) A small molecule that binds Hedgehog and blocks its signaling in human cells, Nat Chem Biol 5, 154–156.PubMedCrossRefGoogle Scholar
  2. 2.
    Kwon, S. J., Lee, M. Y., Ku, B., Sherman, D. H., and Dordick, J. S. (2007) High-throughput, microarray-based synthesis of natural product analogues via in vitro metabolic pathway construction, ACS Chem Biol 2, 419–425.PubMedCrossRefGoogle Scholar
  3. 3.
    Uttamchandani, M., Lee, W. L., Wang, J., and Yao, S. Q. (2007) Quantitative inhibitor fingerprinting of metalloproteases using small molecule microarrays, J Am Chem Soc 129, 13110–13117.PubMedCrossRefGoogle Scholar
  4. 4.
    Urbina, H. D., Debaene, F., Jost, B., Bole-Feysot, C., Mason, D. E., Kuzmic, P., Harris, J. L., and Winssinger, N. (2006) Self-assembled small-molecule microarrays for protease screening and profiling, Chembiochem 7, 1790–1797.PubMedCrossRefGoogle Scholar
  5. 5.
    Koehler, A. N., Shamji, A. F., and Schreiber, S. L. (2003) Discovery of an inhibitor of a transcription factor using small molecule microarrays and diversity-oriented synthesis, J Am Chem Soc 125, 8420–8421.PubMedCrossRefGoogle Scholar
  6. 6.
    Labuda, L. P., Pushechnikov, A., and Disney, M. D. (2009) Small molecule microarrays of RNA-focused peptoids help identify inhibitors of a pathogenic group I intron, ACS Chem Biol 4, 299–307.PubMedCrossRefGoogle Scholar
  7. 7.
    Vegas, A. J., Fuller, J. H., and Koehler, A. N. (2008) Small-molecule microarrays as tools in ligand discovery, Chem Soc Rev 37, 1385–1394.PubMedCrossRefGoogle Scholar
  8. 8.
    Duffner, J. L., Clemons, P. A., and Koehler, A. N. (2007) A pipeline for ligand discovery using small-molecule microarrays, Curr Opin Chem Biol 11, 74–82.PubMedCrossRefGoogle Scholar
  9. 9.
    Uttamchandani, M., Wang, J., and Yao, S. Q. (2006) Protein and small molecule microarrays: powerful tools for high-throughput proteomics, Mol Biosyst 2, 58–68.PubMedCrossRefGoogle Scholar
  10. 10.
    Kohn, M., Wacker, R., Peters, C., Schroder, H., Soulere, L., Breinbauer, R., Niemeyer, C. M., and Waldmann, H. (2003) Staudinger ligation: a new immobilization strategy for the preparation of small-molecule arrays, Angew Chem Int Ed Engl 42, 5830–5834.PubMedCrossRefGoogle Scholar
  11. 11.
    Bradner, J. E., McPherson, O. M., Mazitschek, R., Barnes-Seeman, D., Shen, J. P., Dhaliwal, J., Stevenson, K. E., Duffner, J. L., Park, S. B., Neuberg, D. S., Nghiem, P., Schreiber, S. L., and Koehler, A. N. (2006) A robust small-molecule microarray platform for screening cell lysates, Chem Biol 13, 493–504.PubMedCrossRefGoogle Scholar
  12. 12.
    Miyazaki, I., Okumura, H., Simizu, S., Takahashi, Y., Kanoh, N., Muraoka, Y., Nonomura, Y., and Osada, H. (2009) Structure-affinity relationship study of bleomycins and Shble protein by use of a chemical array, Chembiochem 10, 845–852.PubMedCrossRefGoogle Scholar
  13. 13.
    Studer, A., Hadida, S., Ferritto, R., Kim, S. Y., Jeger, P., Wipf, P., and Curran, D. P. (1997) Fluorous synthesis: a fluorous-phase strategy for improving separation efficiency in organic synthesis, Science 275, 823–826.PubMedCrossRefGoogle Scholar
  14. 14.
    Zhang, W., and Lu, Y. (2007) 96-well plate-to-plate gravity fluorous solid-phase extraction (F-SPE) for solution-phase library purification, J Comb Chem 9, 836–843.PubMedCrossRefGoogle Scholar
  15. 15.
    Curran, D. P. (2008) Chemistry. Fluorous tags unstick messy chemical biology problems, Science 321, 1645–1646.PubMedCrossRefGoogle Scholar
  16. 16.
    Ko, K. S., Jaipuri, F. A., and Pohl, N. L. (2005) Fluorous-based carbohydrate microarrays, J Am Chem Soc 127, 13162–13163.PubMedCrossRefGoogle Scholar
  17. 17.
    Jaipuri, F. A., Collet, B. Y., and Pohl, N. L. (2008) Synthesis and quantitative evaluation of Glycero-D-manno-heptose binding to concanavalin A by fluorous-tag assistance, Angew Chem Int Ed Engl 47, 1707–1710.PubMedCrossRefGoogle Scholar
  18. 18.
    Chen, G. S., and Pohl, N. L. (2008) Synthesis of fluorous tags for incorporation of reducing sugars into a quantitative microarray platform, Org Lett 10, 785–788.PubMedCrossRefGoogle Scholar
  19. 19.
    Nicholson, R. L., Ladlow, M. L., and Spring, D. R. (2007) Fluorous tagged small molecule microarrays, Chem Commun (Camb) 14, 3906–3908.CrossRefGoogle Scholar
  20. 20.
    Vegas, A. J., Bradner, J. E., Tang, W., McPherson, O. M., Greenberg, E. F., Koehler, A. N., and Schreiber, S. L. (2007) Fluorous-based small-molecule microarrays for the discovery of histone deacetylase inhibitors, Angew Chem Int Ed Engl 46, 7960–7964.PubMedCrossRefGoogle Scholar
  21. 21.
    Taunton, J., Hassig, C. A., and Schreiber, S. L. (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p, Science 272, 408–411.PubMedCrossRefGoogle Scholar
  22. 22.
    Botrugno, O. A., Santoro, F., and Minucci, S. (2009) Histone deacetylase inhibitors as a new weapon in the arsenal of differentiation therapies of cancer, Cancer Lett 280, 134–144.PubMedCrossRefGoogle Scholar
  23. 23.
    Kouzarides, T. (2007) Chromatin modifications and their function, Cell 128, 693–705.PubMedCrossRefGoogle Scholar
  24. 24.
    Wong, J. C., Hong, R., and Schreiber, S. L. (2003) Structural biasing elements for in-cell histone deacetylase paralog selectivity, J Am Chem Soc 125, 5586–5587.PubMedCrossRefGoogle Scholar
  25. 25.
    Khan, N., Jeffers, M., Kumar, S., Hackett, C., Boldog, F., Khramtsov, N., Qian, X., Mills, E., Berghs, S. C., Carey, N., Finn, P. W., Collins, L. S., Tumber, A., Ritchie, J. W., Jensen, P. B., Lichenstein, H. S., and Sehested, M. (2008) Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors, Biochem J 409, 581–589.PubMedCrossRefGoogle Scholar
  26. 26.
    Kelly, W. K., Richon, V. M., O’Connor, O., Curley, T., MacGregor-Curtelli, B., Tong, W., Klang, M., Schwartz, L., Richardson, S., Rosa, E., Drobnjak, M., Cordon-Cordo, C., Chiao, J. H., Rifkind, R., Marks, P. A., and Scher, H. (2003) Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously, Clin Cancer Res 9, 3578–3588.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Arturo J. Vegas
    • 1
    • 2
    • 3
  • Angela N. Koehler
    • 4
  1. 1.Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Koch Institute for Integrative Cancer ResearchCambridgeUSA
  3. 3.Department of AnesthesiologyChildren’s Hospital BostonBostonUSA
  4. 4.Broad Institute of Harvard and MITCambridgeUSA

Personalised recommendations