Mass Spectrometric Protein Identification Using the Global Proteome Machine

Part of the Methods in Molecular Biology book series (MIMB, volume 673)


Protein identification by mass spectrometry is widely used in biological research. Here, we describe how the global proteome machine (GPM) can be used for protein identification and for validation of the results. We cover identification by searching protein sequence collections and spectral libraries as well as validation of the results using expectation values, rho-diagrams, and spectrum databases.

Key words

Proteomics Mass spectrometry Protein identification Spectrum libraries Validation 



This work was supported by funding provided by the National Institutes of Health Grants RR00862 and RR022220, the Carl Trygger foundation, and the Swedish research council.


  1. 1.
    K. Flikka, L. Martens, J. Vandekerckhove, K. Gevaert, and I. Eidhammer (2006) Improving the reliability and throughput of mass spectrometry-based proteomics by spectrum quality filtering, Proteomics, 6, 2086–94.PubMedCrossRefGoogle Scholar
  2. 2.
    W.J. Henzel, T.M. Billeci, J.T. Stults, S.C. Wong, C. Grimley, and C. Watanabe (1993) Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases, Proc Natl Acad Sci USA, 90, 5011–5.PubMedCrossRefGoogle Scholar
  3. 3.
    D. Fenyo, J. Qin, and B.T. Chait (1998) Protein identification using mass spectrometric information, Electrophoresis, 19, 998–1005.PubMedCrossRefGoogle Scholar
  4. 4.
    J. Eriksson and D. Fenyo (2005) Protein identification in complex mixtures, J Proteome Res, 4, 387–93.PubMedCrossRefGoogle Scholar
  5. 5.
    J. Eriksson and D. Fenyo (2007) Improving the success rate of proteome analysis by modeling protein-abundance distributions and experimental designs, Nat Biotechnol, 25, 651–5.PubMedCrossRefGoogle Scholar
  6. 6.
    O.N. Jensen, A.V. Podtelejnikov, and M. Mann (1997) Identification of the components of simple protein mixtures by high-accuracy peptide mass mapping and database searching, Anal Chem, 69, 4741–50.PubMedCrossRefGoogle Scholar
  7. 7.
    J.K. Eng, A.L. McCormack, and J.R. Yates (1994) An approach to correlate mass spectral data with amino acid sequences in a protein database, J Am Soc Mass Spectrom, 5, 976.CrossRefGoogle Scholar
  8. 8.
    M. Mann and M. Wilm (1994) Error-tolerant identification of peptides in sequence databases by peptide sequence tags, Anal Chem, 66, 4390–9.PubMedCrossRefGoogle Scholar
  9. 9.
    A.M. Duffield, A.V. Robertson, C. Djerassi, B.G. Buchanan, G.L. Sutherland, E.A. Feigenbaum, and J. Lederberg (1969) Applications of artificial intelligence for chemical inference. II. Interpretation of low-resolution mass spectra of ketones, J Am Chem Soc, 91, 2977–81.CrossRefGoogle Scholar
  10. 10.
    J. Lederberg, G.L. Sutherland, B.G. Buchanan, E.A. Feigenbaum, A.V. Robertson, A.M. Duffield, and C. Djerassi (1969) Applications of artificial intelligence for chemical inference. I. The number of possible organic compounds. Acyclic structures containing C, H, O, and N, J Am Chem Soc, 91, 2973–6.CrossRefGoogle Scholar
  11. 11.
    G. Schroll (1969) Applications of artificial intelligence for chemical inference. III. Aliphatic ethers diagnosed by their low-resolution mass spectra and nuclear magnetic resonance data, J Am Chem Soc, 91, 2977–81.CrossRefGoogle Scholar
  12. 12.
    S. Heller (1999) The history of the NIST/EPA/NIH mass spectral database, Today’s Chemist at Work, 8, 45–50.Google Scholar
  13. 13.
    R. Craig, J.C. Cortens, D. Fenyo, and R.C. Beavis (2006) Using annotated peptide mass spectrum libraries for protein identification, J Proteome Res, 5, 1843–9.PubMedCrossRefGoogle Scholar
  14. 14.
    H. Lam, E.W. Deutsch, J.S. Eddes, J.K. Eng, N. King, S.E. Stein, and R. Aebersold (2007) Development and validation of a spectral library searching method for peptide identification from MS/MS, Proteomics, 7, 655–67.PubMedCrossRefGoogle Scholar
  15. 15.
    J.A. Taylor and R.S. Johnson (1997) Sequence database searches via de novo peptide sequencing by tandem mass spectrometry, Rapid Commun Mass Spectrom, 11, 1067–75.PubMedCrossRefGoogle Scholar
  16. 16.
    V. Dancik, T.A. Addona, K.R. Clauser, J.E. Vath, and P.A. Pevzner (1999) De novo peptide sequencing via tandem mass spectrometry, J Comput Biol, 6, 327–42.PubMedCrossRefGoogle Scholar
  17. 17.
    B. Ma, K. Zhang, C. Hendrie, C. Liang, M. Li, A. Doherty-Kirby, and G. Lajoie (2003) PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry, Rapid Commun Mass Spectrom, 17, 2337–42.PubMedCrossRefGoogle Scholar
  18. 18.
    B. Spengler (2004) De novo sequencing, peptide composition analysis, and composition-based sequencing: a new strategy employing accurate mass determination by fourier transform ion cyclotron resonance mass spectrometry, J Am Soc Mass Spectrom, 15, 703–14.PubMedCrossRefGoogle Scholar
  19. 19.
    J. Eriksson, B.T. Chait, and D. Fenyo (2000) A statistical basis for testing the significance of mass spectrometric protein identification results, Anal Chem, 72, 999–1005.PubMedCrossRefGoogle Scholar
  20. 20.
    J.E. Elias and S.P. Gygi (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry, Nat Methods, 4, 207–14.PubMedCrossRefGoogle Scholar
  21. 21.
    H.I. Field, D. Fenyo, and R.C. Beavis (2002) RADARS, a bioinformatics solution that automates proteome mass spectral analysis, optimises protein identification, and archives data in a relational database, Proteomics, 2, 36–47.PubMedCrossRefGoogle Scholar
  22. 22.
    A. Keller, A.I. Nesvizhskii, E. Kolker, and R. Aebersold (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search, Anal Chem, 74, 5383–92.PubMedCrossRefGoogle Scholar
  23. 23.
    D. Fenyo and R.C. Beavis (2003) A method for assessing the statistical significance of mass spectrometry-based protein identifications using general scoring schemes, Anal Chem, 75, 768–74.PubMedCrossRefGoogle Scholar
  24. 24.
    J. Eriksson and D. Fenyo (2004) Probity, a protein identification algorithm with accurate assignment of the statistical significance of the results, J Proteome Res, 3, 32–6.PubMedCrossRefGoogle Scholar
  25. 25.
    R. Craig and R.C. Beavis (2003) A method for reducing the time required to match protein sequences with tandem mass spectra, Rapid Commun Mass Spectrom, 17, 2310–6.PubMedCrossRefGoogle Scholar
  26. 26.
    R. Craig and R.C. Beavis (2004) TANDEM: matching proteins with tandem mass spectra, Bioinformatics, 20, 1466–7.PubMedCrossRefGoogle Scholar
  27. 27.
    R. Craig, J.P. Cortens, and R.C. Beavis (2005) The use of proteotypic peptide libraries for protein identification, Rapid Commun Mass Spectrom, 19, 1844–50.PubMedCrossRefGoogle Scholar
  28. 28.
    R. Craig, J.P. Cortens, and R.C. Beavis (2004) Open source system for analyzing, validating, and storing protein identification data, J Proteome Res, 3, 1234–42.PubMedCrossRefGoogle Scholar
  29. 29.
    D. Fenyo, B.S. Phinney, and R.C. Beavis (2007) Determining the overall merit of protein identification data sets: rho-diagrams and rho-scores, J Proteome Res, 6, 1997–2004.PubMedCrossRefGoogle Scholar
  30. 30.
    D.N. Perkins, D.J. Pappin, D.M. Creasy, and J.S. Cottrell (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data, Electrophoresis, 20, 3551–67.PubMedCrossRefGoogle Scholar
  31. 31.
    W. Zhang and B.T. Chait (2000) ProFound: an expert system for protein identification using mass spectrometric peptide mapping information, Anal Chem, 72, 2482–9.PubMedCrossRefGoogle Scholar
  32. 32.
    J. Magnin, A. Masselot, C. Menzel, and J. Colinge (2004) OLAV-PMF: a novel scoring scheme for high-throughput peptide mass fingerprinting, J Proteome Res, 3, 55–60.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.The Rockefeller UniversityNew YorkUSA
  2. 2.Department of ChemistrySwedish University of Agricultural SciencesUppsalaSweden
  3. 3.The Biomedical Research CentreUniversity of British ColumbiaVancouverCanada

Personalised recommendations