Ligand-Based Approaches to In Silico Pharmacology

  • David Vidal
  • Ricard Garcia-Serna
  • Jordi Mestres
Part of the Methods in Molecular Biology book series (MIMB, volume 672)


The development of computational methods that can estimate the various pharmacodynamic and pharmacokinetic parameters that characterise the interaction of drugs with biological systems has been a highly pursued objective over the last 50 years. Among all, methods based on ligand information have emerged as simple, yet highly efficient, approaches to in silico pharmacology. With the recent impact on the identification of new targets for known drugs, they are again the focus of attention in chemical biology and drug discovery.

Key words

Target profiling Polypharmacology Drug repurposing Topological descriptors Structure–activity relationships 



Funding for this research was received from the Instituto de Salud Carlos III and the Spanish Ministerio de Ciencia e Innovación (project BIO2008-02329). GRIB is a node of the Instituto Nacional de Bioinformática (INB) and a member of the RETIC COMBIOMED network.


  1. 1.
    Ekins, S., Mestres, J., and Testa, B. (2008) In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling. Br. J. Pharmacol. 152, 9–20.CrossRefGoogle Scholar
  2. 2.
    Ekins, S., Mestres, J., and Testa, B. (2008) In silico pharmacology for drug discovery: applications to targets and beyond. Br. J. Pharmacol. 152, 21–37.CrossRefGoogle Scholar
  3. 3.
    Hansch, C. and Fujita, T. (1964) Rho-sigma-pi analysis: a method for the correlation of biological activity and chemical structure. J. Am. Chem. Soc. 86, 1616–1626.CrossRefGoogle Scholar
  4. 4.
    Hansch, C., Hoekman, D., Leo, A., Weininger, D., and Selassie, C. D. (2002) Chem-bioinformatics: comparative QSAR at the interface between chemistry and biology. Chem. Rev. 102, 783–812.PubMedCrossRefGoogle Scholar
  5. 5.
    Kurup, A. (2003) C-QSAR: a database of 18,000 QSARs and associated biological and physical data. J. Comput. Aided Mol. Des. 17, 187–196.PubMedCrossRefGoogle Scholar
  6. 6.
    Lahana, R. (1999) How many leads from HTS? Drug Discov. Today 4, 447–448.PubMedCrossRefGoogle Scholar
  7. 7.
    Bajorath, J. (2002) Integration of virtual and high-throughput screening. Nat. Rev. Drug Discov. 1, 882–894.PubMedCrossRefGoogle Scholar
  8. 8.
    Willett, P. (2003) Similarity-based approaches to virtual screening. Biochem. Soc. Trans. 31, 603–606.PubMedCrossRefGoogle Scholar
  9. 9.
    Lengauer, T., Lemmen, C., Rarey, M., and Zimmermann, M. (2004) Novel technologies for virtual screening. Drug Discov. Today 9, 27–34.PubMedCrossRefGoogle Scholar
  10. 10.
    Bleicher, K. H., Böhm, H. -J., Müller, K., and Alanine, A. I. (2003) Hit and lead generation: beyond high-throughput screening. Nat. Rev. Drug Discov. 2, 369–378.PubMedCrossRefGoogle Scholar
  11. 11.
    Shoichet, B. K. (2004) Virtual screening of chemical libraries. Nature 432, 862–865.PubMedCrossRefGoogle Scholar
  12. 12.
    Mestres, J. (2004) Computational chemogenomic approaches to systematic knowledge-based drug discovery. Curr. Top. Drug Discov. Dev. 7, 304–313.Google Scholar
  13. 13.
    Savchuk, N. P., Balakin, K. V., and Tkachenko, S. E. (2004) Exploring the chemogenomic knowledge space with annotated chemical libraries. Curr. Opin. Chem. Biol. 8, 412–417.PubMedCrossRefGoogle Scholar
  14. 14.
    Bredel, M. and Jacoby, E. (2004) Chemogenomics: an emerging strategy for rapid target and drug discovery. Nat. Rev. Genetics 5, 262–275.CrossRefGoogle Scholar
  15. 15.
    Bajorath, J. (2008) Computational analysis of ligand relationships within target families. Curr. Opin. Chem. Biol. 12, 352–358.PubMedCrossRefGoogle Scholar
  16. 16.
    Karelson, M. (2000) Molecular descriptors in QSAR/QSPR. Wiley-VCH: New York.Google Scholar
  17. 17.
    Todeschini, R. and Consonni, V. (2000) Handbook of molecular descriptors. Wiley-VCH: New York.CrossRefGoogle Scholar
  18. 18.
    Walters, W. P. and Goldman, B. B. (2005) Feature selection in quantitative structure-activity relationships. Curr. Opin. Drug Discov. Devel. 8, 329–333.PubMedGoogle Scholar
  19. 19.
    Willett, P. (2006) Similarity-based virtual screening using 2D fingerprints. Drug Discov. Today 11, 1046–1053.PubMedCrossRefGoogle Scholar
  20. 20.
    Mestres, J., Gregori-Puigjané, E., Valverde, S., and Solé, R. V. (2009) The topology of drug-target interaction networks: implicit dependence on drug properties and protein families. Mol. Biosyst. 5, 1051–1057.PubMedCrossRefGoogle Scholar
  21. 21.
    Gregori-Puigjané, E. and Mestres, J. (2006) SHED: Shannon entropy descriptors from topological feature distributions. J. Chem. Inf. Model. 46, 1615–1622.PubMedCrossRefGoogle Scholar
  22. 22.
    Gregori-Puigjané, E. and Mestres, J. (2008) A ligand-based approach to mining the chemogenomic space of drugs. Comb. Chem. High Throughput Screen. 11, 669–676.PubMedCrossRefGoogle Scholar
  23. 23.
    Keiser, M. J., Roth, B. L., Armbruster, B. N., Ernsberger, P., Irwin, J. J., and Shoichet, B. K. (2007) Relating protein pharmacology by ligand chemistry. Nat. Biotechnol. 25, 197–206.PubMedCrossRefGoogle Scholar
  24. 24.
    Keiser, M. J., Setola, V., Irwin, J. J., Laggner, C., Abbas, A. I., Hufeisen, S. J., Jensen, N. H., Kuijer, M. B., Matos, R. C., Tran, T. B., Whaley, R., Glennon, R. A., Hert, J., Thomas, K. L. H., Edwards, D. D., Shoichet, B. K., and Roth, B. L. (2009) Predicting new molecular targets for known drugs. Nature 462, 175–182.PubMedCrossRefGoogle Scholar
  25. 25.
    Campillos, M., Kuhn, M., Gavin, A. -C., Jensen, L. J., and Bork, P. (2008) Drug target identification using side-effect similarity. Science 321, 263–266.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2011

Authors and Affiliations

  • David Vidal
    • 1
  • Ricard Garcia-Serna
    • 1
  • Jordi Mestres
    • 1
  1. 1.Chemotargets SL and Chemogenomics Laboratory, Research Unit on Biomedical InformaticsInstitut Municipal d’Investigació Mèdica and Universitat Pompeu FabraBarcelonaSpain

Personalised recommendations