Advertisement

The Scaffold Tree: An Efficient Navigation in the Scaffold Universe

  • Peter Ertl
  • Ansgar Schuffenhauer
  • Steffen Renner
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 672)

Abstract

The Scaffold Tree algorithm (J Chem Inf Model 47:47–58, 2007) allows to organize large molecular data sets by arranging sets of molecules into a unique tree hierarchy based on their scaffolds, with scaffolds forming leaf nodes of such tree. The hierarchy is created by iterative removal of rings from more complex scaffolds using chemically meaningful set of rules, until a single, root ring is obtained. The classification is deterministic, data set independent, and scales linearly with the number of compounds included in the data set. In this review we summarize the basic principles of the Scaffold Tree methodology and review its applications, which appeared in recent medicinal chemistry literature, including the use of Scaffold Trees for visualization of large chemical data sets, compound clustering, and the identification of novel bioactive molecules. References to several computer programs, including also free tools available on the Internet, allowing to perform classification and visualization of molecules based on their scaffolds are also provided.

Key words

Scaffold Ring Scaffold classification Scaffold hopping Clustering Chemical space Scientific visualization 

References

  1. 1.
    Brown, N. and Jacoby, E. (2006) On Scaffolds and Hopping in Medicinal Chemistry. Mini Rev. Med. Chem. 6, 1217–1229.PubMedCrossRefGoogle Scholar
  2. 2.
    Schneider, G., Schneider, P., and Renner, S. (2006) Scaffold-Hopping: How far can you Jump? QSAR Comb. Sci. 25, 1162–1171.CrossRefGoogle Scholar
  3. 3.
    Bemis, G. W. and Murcko, M. A. (1996) The Properties of Known Drugs. 1. Molecular Frameworks. J. Med. Chem. 39, 2887–2893.PubMedCrossRefGoogle Scholar
  4. 4.
    Lipkus, A. (2001) Exploring Chemical Rings in a Simple Topological-Descriptor Space. J. Chem. Inf. Comput. Sci. 41, 430–438.PubMedCrossRefGoogle Scholar
  5. 5.
    Lipkus, A. H., Yuan, Q., Lucas, K. A., Funk, S. A., Bartelt, III, W. F., Schenck, R. J., and Trippe, A. J. (2008) Structural Diversity of Organic Chemistry. A Scaffold Analysis of the CAS Registry. J. Org. Chem. 73, 4443–4451.PubMedCrossRefGoogle Scholar
  6. 6.
    Wilkens, S., Janes, J., and Su, A. (2005) HierS: Hierarchical Scaffold Clustering Using Topological Chemical Graphs. J. Med. Chem. 48, 3182–3193.PubMedCrossRefGoogle Scholar
  7. 7.
    Ertl, P., Jelfs, S., Muehlbacher, J., Schuffenhauer, A., and Selzer, P. (2006) Quest for the Rings. In Silico Exploration of Ring Universe to Identify Novel Bioactive Heteroaromatic Scaffolds. J. Med. Chem. 49, 4568–4573.PubMedCrossRefGoogle Scholar
  8. 8.
    Pitt, W. R., Parry, D. M., Perry, B. G., and Groom, C. R. (2009) Heteroaromatic Rings of the Future. J. Med. Chem. 52, 2952–2963.PubMedCrossRefGoogle Scholar
  9. 9.
    Wester, M. J., Pollock, S. N., Coutsias, E. A., Allu, T. K., Muresan, S., and Oprea, T. I. (2008) Scaffold Topologies. 2. Analysis of Chemical Databases. J. Chem. Inf. Model. 48, 1311–1324.PubMedCrossRefGoogle Scholar
  10. 10.
    Schuffenhauer, A., Ertl, P., Roggo, S., Wetzel, S., Koch, M. A., and Waldmann, H. (2007) The Scaffold Tree–Visualization of the Scaffold Universe by Hierarchical Scaffold Classification. J. Chem. Inf. Model. 47, 47–58.PubMedCrossRefGoogle Scholar
  11. 11.
    Weininger, D. (1988) SMILES, a Chemical Language and Information System. 1. Introduction to Methodology and Encoding Rules. J. Chem. Inf. Comput. Sci. 28, 31–36.CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Koch, M., Schuffenhauer, A., Scheck, M., Wetzel, S., Casaulta, M., Odermatt, A., Ertl, P., and Waldmann, H. (2005) Charting Biologically Relevant Chemical Space: A Structural Classification of Natural Products (SCONP). Proc. Natl. Acad. Sci. U.S.A. 102, 17272–17277.PubMedCrossRefGoogle Scholar
  14. 14.
    Renner, S., van Otterlo, W. A. L., Dominguez Seoane, M., Moecklinghoff, S., Hofmann, B., Wetzel, S., Schuffenhauer, A., Ertl, P., Oprea, T. I., Steinhilber, D., Brunsveld, L., Rauh, D., and Waldmann H. (2009) Bioactivity-Guided Mapping and Navigation of Chemical Space. Nature Chem. Biol. 5, 585–592.CrossRefGoogle Scholar
  15. 15.
  16. 16.
    GVK MedChem Database, GVK Biosciences, http://www.gvkbio.com/.
  17. 17.
    Schuffenhauer, A., Brown, N., Ertl, P., Jenkins, J. L., Selzer, P., and Hamon, J. (2007) Clustering and Rule-Based Classifications of Chemical Structures Evaluated in the Biological Activity Space. J. Chem. Inf. Model. 47, 325–336.PubMedCrossRefGoogle Scholar
  18. 18.
    Kelley, L. A., Gardner, S. P., and Sutcliffe, M. J. (1996) An Automated Approach for Clustering an Ensemble of NMR-Derived Protein Structures into Conformationally Related Subfamilies. Protein Eng. 9, 1063–1065.PubMedCrossRefGoogle Scholar
  19. 19.
    Clark, R. D. (1997) OptiSim: An Extended Dissimilarity Selection Method for Finding Diverse Representative Subsets. J. Chem. Inf. Comput. Sci. 37, 1181–1188.CrossRefGoogle Scholar
  20. 20.
    Engels, M. F. M., Gibbs, A. C., Jaeger, E. P., Verbinnen, D., Lobanov, V. S., and Agrafiotis, D. K. (2006) A Cluster-Based Strategy for Assessing the Overlap between Large Chemical Libraries and Its Application to a Recent Acquisition. J. Chem. Inf. Model. 46, 2651–2660.PubMedCrossRefGoogle Scholar
  21. 21.
    MacCuish, J., Nicolaou, C., and MacCuish, N. E. (2001) Ties in Proximity and Clustering Compounds. J. Chem. Inf. Comput. Sci. 41, 134–146.PubMedCrossRefGoogle Scholar
  22. 22.
    Hubert, L. and Arabie, P. (1985) Comparing Partitions. J. Classif. 2, 193–218.CrossRefGoogle Scholar
  23. 23.
    Xu, Y. J. and Johnson, M. (2002) Using Molecular Equivalence Numbers To Visually Explore Structural Features that Distinguish Chemical Libraries. J. Chem. Inf. Comput. Sci. 42, 912–926.PubMedCrossRefGoogle Scholar
  24. 24.
    Huebel, K., Lessmann, T., and Waldmann, H. (2008) Chemical Biology-Identification of Small Molecule Modulators of Cellular Activity by Natural Product Inspired Synthesis. Chem. Soc. Rev. 37, 1361–1374.CrossRefGoogle Scholar
  25. 25.
    Lessmann, T., Leuenberger, M., Menninger, S., Lopez-Canet, M., Müller, O., Hümmer, S., Bormann, J., Korn, K., Fava, E., Zerial M., Mayer, T. U., and Waldmann, H. (2007) Natural Product-Derived Modulators of Cell Cycle Progression and Viral Entry by Enantioselective Oxa Diels-Alder Reactions on the Solid Phase. Chem. Biol. 14, 443–451.PubMedCrossRefGoogle Scholar
  26. 26.
    Barun, O., Kumar, K., Sommer, S., Langerak, A., Mayer, T. U., and Waldmann, H. (2005) Natural Product-Guided Synthesis of a Spiroacetal Collection Reveals Modulators of Tubulin Cytoskeleton Integrity. Eur. J. Org. Chem. 22, 4773–4788.CrossRefGoogle Scholar
  27. 27.
    Nören-Müller, A., Reis-Correa, I., Prinz, H., Rosenbaum, C., Saxena, K., Schwalbe, H. J., Vestweber, D., Cagna, G., Schunk, S., Schwarz, O., Schiewe, H., and Waldmann, H. (2006) Discovery of Protein Phosphatase Inhibitor Classes by Biology-Oriented Synthesis. Proc. Natl. Acad. Sci. U.S.A. 103, 10606–10611.PubMedCrossRefGoogle Scholar
  28. 28.
    Wetzel, S., Klein, K., Renner, S., Rauh, D., Oprea, T. I., Mutzel, P., and Waldmann, H. (2009) Interactive exploration of chemical space with Scaffold Hunter. Nature Chem. Biol. 5, 581–583. http://sourceforge.net/projects/scaffoldhunter/.Google Scholar
  29. 29.
    Clark, A. M., and Labute, P. (2008) Detection and Assignment of Common Scaffolds in Project Databases of Lead Molecules. J. Med. Chem. 52, 469–483.CrossRefGoogle Scholar
  30. 30.
  31. 31.
  32. 32.
  33. 33.
    Ertl, P. and Jelfs, S. (2007) Designing Drugs on the Internet? Free Web Tools and Services Supporting Medicinal Chemistry. Curr. Top. Med. Chem. 7, 1491–1501.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Peter Ertl
    • 1
  • Ansgar Schuffenhauer
    • 1
  • Steffen Renner
    • 1
  1. 1.Novartis Institutes for BioMedical ResearchBaselSwitzerland

Personalised recommendations