Advertisement

Construction and Screening of Marine Metagenomic Libraries

  • Nancy Weiland
  • Carolin Löscher
  • Rebekka Metzger
  • Ruth SchmitzEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 668)

Abstract

Marine microbial communities are highly diverse and have evolved during extended evolutionary processes of physiological adaptations under the influence of a variety of ecological conditions and selection pressures. They harbor an enormous diversity of microbes with still unknown and probably new physiological characteristics. Besides, the surfaces of marine multicellular organisms are typically covered by a consortium of epibiotic bacteria and act as barriers, where diverse interactions between microorganisms and hosts take place. Thus, microbial diversity in the water column of the oceans and the microbial consortia on marine tissues of multicellular organisms are rich sources for isolating novel bioactive compounds and genes. Here we describe the sampling, construction of large-insert metagenomic libraries from marine habitats and exemplarily one function based screen of metagenomic clones.

Key words

Isolation of metagenomic DNA 16S rDNA phylogenetic analysis Fosmid library Function-based screen 

References

  1. 1.
    Amann, R.I., Ludwig, W., and Schleifer, K.-H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59, 143–169.PubMedGoogle Scholar
  2. 2.
    Streit, W.R. and Schmitz, R.A. (2004) Metagenomics – the key to the uncultured microbes. Curr Opin Microbiol 7, 492–498.PubMedCrossRefGoogle Scholar
  3. 3.
    Lorenz, P. and Eck, J. (2005) Metagenomics and industrial applications. Nat Rev Microbiol 3, 510–516.PubMedCrossRefGoogle Scholar
  4. 4.
    Pham, V.D., Palden, T., and DeLong, E.F. (2007) Large-scale screens of metagenomic libraries. J Vis Exp (4), 201.Google Scholar
  5. 5.
    DeLong, E.F. (2009) The microbial ocean from genomes to biomes. Nature 459, 200–206.PubMedCrossRefGoogle Scholar
  6. 6.
    Handelsman, J. (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68, 669–685.PubMedCrossRefGoogle Scholar
  7. 7.
    Beja, O., Suzuki, M.T., Koonin, E.V., Aravind, L., Hadd, A., Nguyen, L.P., et al. (2000) Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ Microbiol 2, 516–529.PubMedCrossRefGoogle Scholar
  8. 8.
    Beja, O., Spudich, E., Spudich, J., Leclerc, M., and DeLong, E. (2001) Proteorhodopsin photo­trophy in the ocean. Nature 411, 786–789.PubMedCrossRefGoogle Scholar
  9. 9.
    de la Torre, J.R., Christianson, L.M., Beja, O., Suzuki, M.T., Karl, D.M., Heidelberg, J., et al. (2003) Proteorhodopsin genes are distributed among divergent marine bacterial taxa. Proc Natl Acad Sci USA 100, 12830–12835.PubMedCrossRefGoogle Scholar
  10. 10.
    Woyke, T., Teeling, H., Ivanova, N.N., Huntemann, M., Richter, M., Gloeckner, F.O., et al. (2006) Symbiosis insights through metagenomic analysis of a microbial consortium. Nature 443, 950–955.PubMedCrossRefGoogle Scholar
  11. 11.
    Wild, J., Hradecna, Z., and Szybalski, W. (2002) Conditionally amplifiable BACs: switching from single-copy to high-copy vectors and genomic clones. Genome Res 12, 1434–1444.PubMedCrossRefGoogle Scholar
  12. 12.
    Shizuya, H. and Kouros-Mehr, H. (2001) The development and applications of the bacterial artificial chromosome cloning system. Keio J Med 50, 26–30.PubMedCrossRefGoogle Scholar
  13. 13.
    Azam, F. (1998) Microbial control of oceanic carbon flux: the plot thickens. Science 280, 694–696.CrossRefGoogle Scholar
  14. 14.
    DeLong, E.F. and Karl, D.M. (2005) Genomic perspectives in microbial oceanography. Nature 437, 336–342.PubMedCrossRefGoogle Scholar
  15. 15.
    Karl, D.M. (2007) Microbial oceanography: paradigms, processes and promise. Nat Rev Microbiol 5, 759–769.PubMedCrossRefGoogle Scholar
  16. 16.
    Kennedy, J., Marchesi, J.R., and Dobson, A.D. (2007) Metagenomic approaches to exploit the biotechnological potential of the microbial consortia of marine sponges. Appl Microbiol Biotechnol 75, 11–20.PubMedCrossRefGoogle Scholar
  17. 17.
    Gabor, E.M., de Vries, E.J., and Janssen, D.B. (2003) Efficient recovery of environmental DNA for expression cloning by indirect extraction methods. FEMS Microbiol Ecol 44, 153–163.PubMedCrossRefGoogle Scholar
  18. 18.
    Henne, A., Daniel, R., Schmitz, R.A., and Gottschalk, G. (1999) Construction of environmental DNA libraries in Escherichia coli and screening for the presence of genes conferring utilization of 4-hydroxybutyrate. Appl Environ Microbiol 65, 3901–3907.PubMedGoogle Scholar
  19. 19.
    Sogin, M.L., Morrison, H.G., Huber, J.A., Mark Welch, D., Huse, S.M., Neal, P.R., et al. (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103, 12115–12120.PubMedCrossRefGoogle Scholar
  20. 20.
    De Corte, D., Yokokawa, T., Varela, M.M., Agogue, H., and Herndl, G.J. (2009) Spatial distribution of Bacteria and Archaea and amoA gene copy numbers throughout the water column of the Eastern Mediterranean Sea. ISME J 3, 147–158.PubMedCrossRefGoogle Scholar
  21. 21.
    Treusch, A.H., Kletzin, A., Raddatz, G., Ochsenreiter, T., Quaiser, A., Meurer, G., et al. (2004) Characterization of large-insert DNA libraries from soil for environmental genomic studies of Archaea. Environ Microbiol 6, 970–980.PubMedCrossRefGoogle Scholar
  22. 22.
    Lane, B.G., Bernier, F., Dratewka-Kos, E., Shafai, R., Kennedy, T.D., Pyne, C., et al. (1991) Homologies between members of the germin gene family in hexaploid wheat and similarities between these wheat germins and certain Physarum spherulins. J Biol Chem 266, 10461–10469.PubMedGoogle Scholar
  23. 23.
    DeLong, E.F. (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89, 5685–5689.PubMedCrossRefGoogle Scholar
  24. 24.
    Mead, D.A., Pey, N.K., Herrnstadt, C., Marcil, R.A., and Smith, L.M. (1991) A universal method for the direct cloning of PCR amplified nucleic acid. Biotechnology (N Y) 9, 657–663.CrossRefGoogle Scholar
  25. 25.
    Pages, R.D.M. and Holmes, E.C. (1998) Mole­cular Evolution: A Phylogenetic Approach. Blackwell, Oxford.Google Scholar
  26. 26.
    Suarez-Diaz, E. and Anaya-Munoz, V.H. (2008) History, objectivity, and the construction of molecular phylogenies. Stud Hist Philos Biol Biomed Sci 39, 451–468.PubMedGoogle Scholar
  27. 27.
    Langlois, R.J., LaRoche, J., and Raab, P.A. (2005) Diazotrophic diversity and distribution in the tropical and subtropical Atlantic Ocean. Appl Environ Microbiol 71, 7910–7919.PubMedCrossRefGoogle Scholar
  28. 28.
    Langlois, R.J., Hummer, D., and LaRoche, J. (2008) Abundances and distributions of the dominant nifH phylotypes in the Northern Atlantic Ocean. Appl Environ Microbiol 74, 1922–1931.PubMedCrossRefGoogle Scholar
  29. 29.
    Wild, J., Hradecna, Z., Posfai, G., and Szybalski, W. (1996) A broad-host-range in vivo pop-out and amplification system for generating large quantities of 50- to 100-kb genomic fragments for direct DNA sequencing. Gene 179, 181–188.PubMedCrossRefGoogle Scholar
  30. 30.
    Sektas, M. and Szybalski, W. (1998) Tightly controlled two-stage expression vectors employing the Flp/FRT-mediated inversion of cloned genes. Mol Biotechnol 9, 17–24.PubMedCrossRefGoogle Scholar
  31. 31.
    Kim, B.S., Kim, S.Y., Park, J., Park, W., Hwang, K.Y., Yoon, Y.J., et al. (2007) Sequence-based screening for self-sufficient P450 monooxygenase from a metagenome library. J Appl Microbiol 102, 1392–1400.PubMedCrossRefGoogle Scholar
  32. 32.
    Venter, J.C., Remington, K., Heidelberg, J.F., Halpern, A.L., Rusch, D., Eisen, J.A., et al. (2004) Environmental genome shotgun sequen­­cing of the Sargasso Sea. Science 304, 66–74.PubMedCrossRefGoogle Scholar
  33. 33.
    Tringe, S.G., von Mering, C., Kobayashi, A., Salamov, A.A., Chen, K., Chang, H.W., et al. (2005) Comparative metagenomics of microbial communities. Science 308, 554–557.PubMedCrossRefGoogle Scholar
  34. 34.
    Green, B.D. and Keller, M. (2006) Capturing the uncultivated majority. Curr Opin Biotechnol 17, 236–240.PubMedCrossRefGoogle Scholar
  35. 35.
    Gillespie, D.E., Brady, S.F., Bettermann, A.D., Cianciotto, N.P., Liles, M.R., Rondon, M.R., et al. (2002) Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA. Appl Environ Microbiol 68, 4301–4306.PubMedCrossRefGoogle Scholar
  36. 36.
    Brady, S.F., Chao, C.J., and Clardy, J. (2002) New natural product families from an environmental DNA (eDNA) gene cluster. J Am Chem Soc 124, 9968–9969.PubMedCrossRefGoogle Scholar
  37. 37.
    MacNeil, I.A., Tiong, C.L., Minor, C., August, P.R., Grossman, T.H., Loiacono, K.A., et al. (2001) Expression and isolation of antimicrobial small molecules from soil DNA libraries. J Mol Microbiol Biotechnol 3, 301–308.PubMedGoogle Scholar
  38. 38.
    Henne, A., Schmitz, R.A., Bomeke, M., Gottschalk, G., and Daniel, R. (2000) Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Appl Environ Microbiol 66, 3113–3116.PubMedCrossRefGoogle Scholar
  39. 39.
    Cottrell, M.T., Moore, J.A., and Kirchman, D.L. (1999) Chitinases from uncultured marine microorganisms. Appl Environ Microbiol 65, 2553–2557.PubMedGoogle Scholar
  40. 40.
    Majernik, A., Gottschalk, G., and Daniel, R. (2001) Screening of environmental DNA libraries for the presence of genes conferring Na(+)(Li(+))/H(+) antiporter activity on Escherichia coli: characterization of the recovered genes and the corresponding gene products. J Bacteriol 183, 6645–6653.PubMedCrossRefGoogle Scholar
  41. 41.
    Ghose, T.K. (1987) Measurement of cellulase activities. Pure Appl Chem 59, 257–268.CrossRefGoogle Scholar
  42. 42.
    Cohen, S. (2007) Bezoars and foreign bodies. In: Porter, R.S., Kaplan, J.L., Homeier, B.P., and Beers, M.H. Eds. The Merck Manual-Online Library. http://www.merck.com/mmpe/sec02/ch014/ch014c.html
  43. 43.
    Teather, R.M. and Wood, P.J. (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43, 777–780.PubMedGoogle Scholar

Copyright information

© Humana Press 2010

Authors and Affiliations

  • Nancy Weiland
    • 1
  • Carolin Löscher
    • 1
  • Rebekka Metzger
    • 1
  • Ruth Schmitz
    • 1
    Email author
  1. 1.Institute for General MicrobiologyChristian Albrechts University KielKielGermany

Personalised recommendations