Detection of High-Risk Mucosal Human Papillomavirus DNA in Human Specimens by a Novel and Sensitive Multiplex PCR Method Combined with DNA Microarray

  • Tarik Gheit
  • Massimo TommasinoEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 665)


Epidemiological and functional studies have clearly demonstrated that certain types of human papillomavirus (HPV) from the genus alpha of the HPV phylogenetic tree, referred to as high-risk (HR) types, are the etiological cause of cervical cancer. Several methods for HPV detection and typing have been developed, and their importance in clinical and epidemiological studies has been well demonstrated. However, comparative studies have shown that several assays have different sensitivities for the detection of specific HPV types, particularly in the case of multiple infections.

In this chapter, we describe a novel one-shot method for the detection and typing of 19 mucosal HR HPV types (types 16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68, 70, 73, and 82). The assay combines the advantages of the multiplex PCR methods, i.e., high sensitivity and the possibility to perform multiple amplifications in a single reaction, with an array primer extension (APEX) assay. The latter method offers the benefits of Sanger dideoxy sequencing with the high-throughput potential of the microarray. Initial studies have revealed that the assay is very sensitive in detecting multiple HPV infections.

Key words

Cervical cancer High-Risk human papillomaviruses Multiplex PCR Arrayed primer extension Multiple HPV infections 



We are grateful to all the members of our laboratory for their cooperation and to John Daniel for critical reading of the manuscript. Our research programs are supported by La Ligue Contre le Cancer (Comité du Rhône, Drôme, Savoie), the Association pour la Recherche sur le Cancer, European Union (LSHC-2005-018704), Region Rhône-Alpes and Association for International Cancer Research.


  1. 1.
    de Villiers, E.M., Fauquet, C., Broker, T.R., Bernard, H.U., and zur Hausen, H. (2004) Classification of papillomaviruses. Virology 324(1), 17–27.PubMedCrossRefGoogle Scholar
  2. 2.
    zur Hausen, H. (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2(5), 342–350.PubMedCrossRefGoogle Scholar
  3. 3.
    Munoz, N., Bosch, F.X., de Sanjose, S., et al. (2003) Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348(6), 518–527.PubMedCrossRefGoogle Scholar
  4. 4.
    Cogliano, V., Baan, R., Straif, K., Grosse, Y., Secretan, B., and El Ghissassi, F. (2005) Carcinogenicity of human papillomaviruses. Lancet Oncol 6(4), 204.PubMedCrossRefGoogle Scholar
  5. 5.
    Smith, J.S., Lindsay, L., Hoots, B., et al. (2007) Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: a meta-analysis update. Int J Cancer 121(3), 621–632.PubMedCrossRefGoogle Scholar
  6. 6.
    Ostor, A.G. (1993) Natural history of cervical intraepithelial neoplasia: a critical review. Int J Gynecol Pathol 12(2), 186–192.PubMedCrossRefGoogle Scholar
  7. 7.
    Jones, C.J., Brinton, L.A., Hamman, R.F., et al. (1990) Risk factors for in situ cervical cancer: results from a case-control study. Cancer Res 50(12), 3657–3662.PubMedGoogle Scholar
  8. 8.
    Magnusson, P.K., Sparen, P., and Gyllensten, U.B. (1999) Genetic link to cervical tumours. Nature 400(6739), 6729–6730.CrossRefGoogle Scholar
  9. 9.
    Moreno, V., Munoz, N., Bosch, F.X., et al. (1995) Risk factors for progression of cervical intraepithelial neoplasm grade III to invasive cervical cancer. Cancer Epidemiol Biomarkers Prev 4(5), 459–467.PubMedGoogle Scholar
  10. 10.
    Moreno, V., Bosch, F.X., Munoz, N., et al. (2002) Effect of oral contraceptives on risk of cervical cancer in women with human papillomavirus infection: the IARC multicentric case-control study. Lancet 359(9312), 1085–1092.PubMedCrossRefGoogle Scholar
  11. 11.
    Munoz, N., Franceschi, S., Bosetti, C., et al. (2002) Role of parity and human papillomavirus in cervical cancer: the IARC multicentric case-control study. Lancet 359(9312), 1093–1101.PubMedCrossRefGoogle Scholar
  12. 12.
    Schiffman, M.H., Haley, N.J., Felton, J.S., et al. (1987) Biochemical epidemiology of cervical neoplasia: measuring cigarette smoke constituents in the cervix. Cancer Res 47(14), 3886–3888.PubMedGoogle Scholar
  13. 13.
    Pfister, H. (2003) Chapter 8: human papillomavirus and skin cancer. J Natl Cancer Inst Monogr 31, 52–56.PubMedCrossRefGoogle Scholar
  14. 14.
    Papanicolaou, G.N. (1928) New Cancer Diagnosis. Race Betterment Foundation, Battle Creek, MI, pp. 528–534.Google Scholar
  15. 15.
    International Agency for Research on Cancer (2005) Cervix Cancer Screening. IARC Press, Lyon, France.Google Scholar
  16. 16.
    Fujinaga, Y., Shimada, M., Okazawa, K., Fukushima, M., Kato, I., and Fujinaga, K. (1991) Simultaneous detection and typing of genital human papillomavirus DNA using the polymerase chain reaction. J Gen Virol 72(Pt 5), 1039–1044.PubMedCrossRefGoogle Scholar
  17. 17.
    Resnick, R.M., Cornelissen, M.T., Wright, D.K., et al. (1990) Detection and typing of human papillomavirus in archival cervical cancer specimens by DNA amplification with consensus primers. J Natl Cancer Inst 82(18), 1477–1484.PubMedCrossRefGoogle Scholar
  18. 18.
    Snijders, P.J., van den Brule, A.J., Schrijnemakers, H.F., Snow, G., Meijer, C.J., and Walboomers, J.M. (1990) The use of general primers in the polymerase chain reaction permits the detection of a broad spectrum of human papillomavirus genotypes. J Gen Virol 71, 173–181.PubMedCrossRefGoogle Scholar
  19. 19.
    van den Brule, A.J., Pol, R., Fransen-Daalmeijer, N., Schouls, L.M., Meijer, C.J., and Snijders, P.J. (2002) GP5+/6+ PCR followed by reverse line blot analysis enables rapid and high-throughput identification of human papillomavirus genotypes. J Clin Microbiol 40(3), 779–787.PubMedCrossRefGoogle Scholar
  20. 20.
    Yoshikawa, H., Kawana, T., Kitagawa, K., Mizuno, M., Yoshikura, H., and Iwamoto, A. (1991) Detection and typing of multiple genital human papillomaviruses by DNA amplification with consensus primers. Jpn J Cancer Res 82(5), 524–531.PubMedCrossRefGoogle Scholar
  21. 21.
    Tieben, L.M., Ter Schegget, J., Minnaar, R.P., et al. (1993) Detection of cutaneous and genital HPV types in clinical samples by PCR using consensus primers. J Virol Methods 42(2–3), 265–279.PubMedCrossRefGoogle Scholar
  22. 22.
    Sasagawa, T., Minemoto, Y., Basha, W., et al. (2000) A new PCR-based assay amplifies the E6-E7 genes of most mucosal human papillomaviruses (HPV). Virus Res 67(2), 127–139.PubMedCrossRefGoogle Scholar
  23. 23.
    Coutlee, F., Gravitt, P., Kornegay, J., et al. (2002) Use of PGMY primers in L1 consensus PCR improves detection of human papillomavirus DNA in genital samples. J Clin Microbiol 40(3), 902–907.PubMedCrossRefGoogle Scholar
  24. 24.
    Perrons, C., Kleter, B., Jelley, R., Jalal, H., Quint, W., and Tedder, R. (2002) Detection and genotyping of human papillomavirus DNA by SPF10 and MY09/11 primers in cervical cells taken from women attending a colposcopy clinic. J Med Virol 67(2), 246–252.PubMedCrossRefGoogle Scholar
  25. 25.
    Qu, W., Jiang, G., Cruz, Y., et al. (1997) PCR detection of human papillomavirus: comparison between MY09/MY11 and GP5+/GP6+ primer systems. J Clin Microbiol 35(6), 1304–1310.PubMedGoogle Scholar
  26. 26.
    Gemignani, F., Landi, S., Chabrier, A., et al. (2004) Generation of a DNA microarray for determination of E6 natural variants of human papillomavirus type 16. J Virol Methods 119(2), 95–102.PubMedCrossRefGoogle Scholar
  27. 27.
    Kurg, A., Tonisson, N., Georgiou, I., Shumaker, J., Tollett, J., and Metspalu, A. (2000) Arrayed primer extension: solid-phase four-color DNA resequencing and mutation detection technology. Genet Test 4(1), 1–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Shumaker, J.M., Metspalu, A., and Caskey, C.T. (1996) Mutation detection by solid phase primer extension. Hum Mutat 7(4), 346–354.PubMedCrossRefGoogle Scholar
  29. 29.
    Auffray, C., Mundy, C., and Metspalu, A. (2008) DNA arrays: methods and applications: report on HUGO Meeting, Tartu, Estonia, 23-26 May, 1999. Eur J Hum Genet 8(3), 236–238.CrossRefGoogle Scholar
  30. 30.
    Guo, Z., Guilfoyle, R.A., Thiel, A.J., Wang, R., and Smith, L.M. (1994) Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports. Nucleic Acids Res 22(24), 5456–5465.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Infections and Cancer Biology GroupInternational Agency for Research on CancerLyonFrance

Personalised recommendations