Computational Modeling in Systems Biology

  • Ravishankar R. Vallabhajosyula
  • Alpan Raval
Part of the Methods in Molecular Biology book series (MIMB, volume 662)


Interactions among cellular constituents play a crucial role in overall cellular function and organization. These interactions can be viewed as being complementary to the usual “parts list” of genes and proteins and, in conjunction with the expression states of these parts, are key to a systems level understanding of the cell. Here, we review computational approaches to the understanding of the functional roles of cellular networks, ranging from “static” models of network topology to dynamical and stochastic simulations.

Key words

Systems biology Networks Protein–protein interaction Metabolism Genetic interactions Regulation 



The authors would like to acknowledge support provided by the US National Science Foundation grant FIBR 0527023.


  1. 1.
    Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664PubMedCrossRefGoogle Scholar
  2. 2.
    Ekins R, Chu FW (1999) Microarrays: their origins and applications. Trends Biotechnol 17(6):217–218PubMedCrossRefGoogle Scholar
  3. 3.
    Brown PO, Botstein D (1999) Exploring the new world of the genome with DNA microarrays. Nat Genet 21:33–37PubMedCrossRefGoogle Scholar
  4. 4.
    DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686PubMedCrossRefGoogle Scholar
  5. 5.
    Nadon R, Shoemaker J (2003) Statistical issues with microarrays: processing and delays. Trends Genet 18:265–271CrossRefGoogle Scholar
  6. 6.
    Quackenbush J (2002) Microarray data normalization and transformation. Nat Genet 32:496–501PubMedCrossRefGoogle Scholar
  7. 7.
    Leung YF, Cavalieri D (2003) Fundamentals of cDNA microarray data analysis. Trends Genet 19:649–659PubMedCrossRefGoogle Scholar
  8. 8.
    Allison DB, Cui X, Page GP, Sabripour M (2006) Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet 7:55–65PubMedCrossRefGoogle Scholar
  9. 9.
    Marshall E (2004) Getting the noise out of gene arrays. Science 306:630–631PubMedCrossRefGoogle Scholar
  10. 10.
    Troyanskaya O, Cantor M, Sherlock G, Brown PO, Hastie T et al (2001) Missing value estimation methods of DNA microarrays. Bioinformatics 17:520–525PubMedCrossRefGoogle Scholar
  11. 11.
    Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95(25):14863–14868PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Quackenbush J (2001) Computational analysis of microarray data. Nat Rev Genet 2:418–427PubMedCrossRefGoogle Scholar
  13. 13.
    Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complimentary DNA microarray. Science 270(5235):467–470PubMedCrossRefGoogle Scholar
  14. 14.
    Duggan DJ, Bittner M, Chen Y, Meltzer P, Trent JM (1999) Expression profiling using cDNA microarrays. Nat Genet 21:10–14PubMedCrossRefGoogle Scholar
  15. 15.
    Hacia JG (1999) Resequencing and mutational analysis using oligonucleotide microarrays. Nat Genet 21:42–47PubMedCrossRefGoogle Scholar
  16. 16.
    Haab BB, Dunham MJ, Brown PO (2001) Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol 2:1–13CrossRefGoogle Scholar
  17. 17.
    Debouck C, Goodfellow PN (1999) DNA microarrays in drug discovery and development. Nat Genet 21:48–50PubMedCrossRefGoogle Scholar
  18. 18.
    DeRisi JL, Penland L, Brown PO, Bittner ML, Meltzer PS et al (1996) Use of a cDNA microarray to analyze gene expression patterns in human cancer. Nat Genet 14:457–460PubMedCrossRefGoogle Scholar
  19. 19.
    Michiels S, Koscielny S, Hill C (2005) Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 365:488–492PubMedCrossRefGoogle Scholar
  20. 20.
    Ma J, Ptashne M (1988) Converting a eukaryotic transcriptional inhibitor into an activator. Cell 55:443–446PubMedCrossRefGoogle Scholar
  21. 21.
    Fields S, Song OK (1989) A novel genetic system to detect protein–protein interactions. Nature 40:245–246CrossRefGoogle Scholar
  22. 22.
    Phizicky EM, Fields S (1995) Protein–protein interactions: methods for detection and analysis. Microbiol Rev 59:94–123PubMedPubMedCentralGoogle Scholar
  23. 23.
    Puig O et al (2001) The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24:218–229PubMedCrossRefGoogle Scholar
  24. 24.
    Solomon MJ, Varshavsky A (1985) Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures. Proc Natl Acad Sci USA 82:6470–74PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Tong AH et al (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294:2364–2368PubMedCrossRefGoogle Scholar
  26. 26.
    Tong AH et al (2004) Global mapping of the yeast genetic interaction network. Science 303:808PubMedCrossRefGoogle Scholar
  27. 27.
    Schuldiner M, Collins SR, Weissman JS, Krogan NJ (2006) Quantitative genetic analysis in Saccharomyces cerevisiae using epistatic miniarray profiles (E-MAPs) and its application to chromatin functions. Methods 40:344–352PubMedCrossRefGoogle Scholar
  28. 28.
    Huang H, Jedynak BM, Bader JS (2007) Where have all the interactions gone? Estimating the coverage of two-hybrid protein interaction maps. PLoS Comput Biol 3:e214PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Deeds EJ, Ashenberg O, Shakhnovich EI (2006) A simple physical model for scaling in protein–protein interaction networks. Proc Natl Acad Sci USA 103:311–316PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Przulj N, Higham DJ (2006) Modeling protein–protein interaction networks via a stickiness index. J R Soc Interface 3:711–716PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    D’haeseleer P, Church GM (2004) Estimating and improving protein interaction error rates. Proc IEEE Comput Syst Bioinform Conf, 216–223Google Scholar
  32. 32.
    Hart GT, Ramani AK, Marcotte EM (2006) How complete are current yeast and human protein-interaction networks? Genome Biol 7:120PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Huang H, Bader JS (2009) Precision and recall estimates for two-hybrid screens. Bioinformatics 25:372–378PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    van Someren EP, Wessels LF, Backer E, Reinders MJ (2002) Genetic network modeling. Pharmacogenomics 3:507–525PubMedCrossRefGoogle Scholar
  35. 35.
    Margolin AA, Califano A (2007) Theory and limitations of genetic network inference from microarray data. Ann N Y Acad Sci 1115:51–72PubMedCrossRefGoogle Scholar
  36. 36.
    Liang S, Fuhrman S, Somogyi R (1998) Reveal, a general reverse engineering algorithm for inference of genetic network architectures. Pac Symp Biocomput 1998:18–29Google Scholar
  37. 37.
    Murphy K, Mian S (1999) Modeling gene expression data using dynamic Bayesian networks. Technical report. University of California, BerkeleyGoogle Scholar
  38. 38.
    Perrin B-E, Ralaivola L, Mazurie A, Bottani S, Mallet J, d’Alche Buc F (2003) Gene networks inference using dynamic Bayesian networks. Bioinformatics 19:S138–S148CrossRefGoogle Scholar
  39. 39.
    Rangel C, Angus J, Ghahramani Z, Lioumi M, Sotheran E, Gaiba A, Wild DL, Falciani F (2004) Modelling T-cell activation using gene expression profiling and state space models. Bioinformatics 20:1361–1372PubMedCrossRefGoogle Scholar
  40. 40.
    Beal MJ, Falciani F, Ghahramani Z, Rangel C, Wild DL (2005) A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics 21:349–356PubMedCrossRefGoogle Scholar
  41. 41.
    Zou M, Conzen SD (2005) A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21:71–79PubMedCrossRefGoogle Scholar
  42. 42.
    Skrabanek L, Saini HK, Bader GD, Enright EJ (2008) Computational prediction of protein–protein interactions. Mol Biotechnol 38:1–17PubMedCrossRefGoogle Scholar
  43. 43.
    Liu Y, Kim I, Zhao H (2008) Protein interaction predictions from diverse sources. Drug Discov Today 13:409–416PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Jansen R, Yu H, Greenbaum D, Kluger Y, Krogan NJ et al (2003) A Bayesian networks approach for predicting protein–protein interactions from genomic data. Science 302:449–453PubMedCrossRefGoogle Scholar
  45. 45.
    Lin N, Wu B, Jansen R, Gerstein M, Zhao H (2004) Information assessment on predicting protein–protein interactions. BMC Bioinform 5:154CrossRefGoogle Scholar
  46. 46.
    Sharan R, Suthram S, Kelley RM, Kuhn T, McCuine S et al (2005) Conserved patterns of protein interaction in multiple species. Proc Natl Acad Sci USA 102:1974–1979PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Qi Y, Bar-Joseph Z, Klein-Seetharaman J (2006) Evaluation of different biological data and computational classification methods for use in protein interaction prediction. Proteins 63:490–500PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Deng M, Mehta S, Sun F, Chen T (2002) Inferring domain-domain interactions from protein–protein interactions. Genome Res 12:1504–1508CrossRefGoogle Scholar
  49. 49.
    Kim I, Liu Y, Zhao H (2007) Bayesian methods for predicting interacting protein pairs using domain information. Biometrics 63:824–833PubMedCrossRefGoogle Scholar
  50. 50.
    Segrè D, DeLuna A, Church GM, Kishony R (2004) Modular epistasis in yeast metabolism. Nat Genet 37:77–83PubMedGoogle Scholar
  51. 51.
    Kelley R, Ideker T (2005) Systematic interpretation of genetic interactions using protein networks. Nat Biotechnol 23:561–566PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Wong SL, Zhang LV, Tong AHY, Li Z, Goldberg D et al (2004) Combining biological networks to predict genetic interactions. Proc Natl Acad Sci USA 101:15682–15687PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Paladugu SR, Zhao S, Ray A, Raval A (2008) Mining protein networks for synthetic genetic interactions. BMC Bioinform 9:426CrossRefGoogle Scholar
  54. 54.
    Albert R, Jeong H, Barabasi AL (2000) Error and attack tolerance of complex networks. Nature 406:378–382PubMedCrossRefGoogle Scholar
  55. 55.
    Han JD, Bertin N, Hao T, Goldberg DS, Berriz GF et al (2004) Evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature 430:88–93PubMedCrossRefGoogle Scholar
  56. 56.
    Jin G, Zhang S, Zhang XS, Chen L (2007) Hubs with network motifs organize modularity dynamically in the protein–protein interaction network of yeast. PLoS One 2:e1207PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Batada NN, Reguly T, Breitkreutz A, Boucher L, Breitkreutz BJ et al (2006) Stratus not altocumulus: a new view of the yeast protein interaction network. PLoS Biol 4:1720–1731CrossRefGoogle Scholar
  58. 58.
    Batada NN, Reguly T, Breitkreutz A, Boucher L, Breitkreutz BJ et al (2007) Still stratus not altocumulus: further evidence against the date/party hub distinction. PLoS Biol 5:e154PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Bertin N, Simonis N, Dupuy D, Cusick ME, Han JDJ et al (2007) Confirmation of organized modularity in the yeast interactome. PLoS Biol 5:e153PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Vallabhajosyula RR, Chakravarti D, Lutfeali S, Ray A, Raval A (2009) Identifying hubs in protein interaction networks. PLoS One 4:e5344PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Hartwell LH, Hopfield JJ, Liebler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:C47–C52PubMedCrossRefGoogle Scholar
  62. 62.
    Lauffenberger DA (2000) Cell signaling pathways as control modules: complexity for simplicity? Proc Natl Acad Sci USA 97:5031–5033CrossRefGoogle Scholar
  63. 63.
    Rao CV, Arkin AP (2001) Control motifs for intracellular regulatory networks. Annu Rev Biomed Eng 3:391–419PubMedCrossRefGoogle Scholar
  64. 64.
    Ihmels J, Friedlander G, Bergmann S, Sarig O, Ziv Y, Barkai N (2002) Revealing modular organization in the yeast transcriptional network. Nat Genet 31:370–377PubMedGoogle Scholar
  65. 65.
    Segal E, Shapira M, Regev A, Pe’er D, Botstein D et al (2003) Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 34:166–176PubMedCrossRefGoogle Scholar
  66. 66.
    Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM (1999) Systematic determination of genetic network architecture. Nat Genet 22:281–285PubMedCrossRefGoogle Scholar
  67. 67.
    Rives AW, Galitski T (2003) Modular organization of cellular networks. Proc Natl Acad Sci USA 100:1128PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297:1551–1555PubMedCrossRefGoogle Scholar
  69. 69.
    Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E Stat Nonlin Soft Matter Phys 69:026113PubMedCrossRefGoogle Scholar
  70. 70.
    Guimera R, Amaral LAN (2005) Functional cartography of complex metabolic networks. Nature 433:895–900PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Guimera R, Sales-Pardo M, Amaral LAN (2007) A network-based method for target selection in metabolic networks. Bioinformatics 23:1616–1622PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Fernandez A (2007) Molecular basis for evolving modularity in the yeast protein in the yeast protein interaction network. PLoS Comput Biol 3:e226PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Qin H, Lu HHS, Wu WB, Li W-H (2003) Evolution of the yeast protein interaction network. Proc Natl Acad Sci USA 100:12820PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Kashtan N, Alon U (2005) Spontaneous evolution of modularity and network motifs. Proc Natl Acad Sci USA 102:13773–13778PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Snel B, Huynen MA (2004) Quantifying modularity in the evolution of biomolecular systems. Genome Res 14:391–397PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    von Mering C, Zdobnov EM, Tsoka S, Ciccarelli FD, Pereira-Leal JB et al (2003) Genome evolution reveals biochemical networks and functional modules. Proc Natl Acad Sci USA 100:15428–15433CrossRefGoogle Scholar
  77. 77.
    von Campillos M, Mering C, Jensen LJ, Bork P (2006) Identification and analysis of evolutionary cohesive functional modules in protein networks. Genome Res 16:374–382PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Petti AA, Church GM (2005) A network of transcriptionally coordinated functional modules in Saccharomyces cerevisiae. Genome Res 15:1298–1306PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Lu H, Shi B, Wu G, Zhang Y, Zhu X et al (2006) Integrated analysis of multiple data sources reveals modular structure of biological networks. Biochem Biophys Res Commun 345:302–309PubMedCrossRefGoogle Scholar
  80. 80.
    Tanay A, Sharan R, Kupiec M, Shamir R (2004) Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogenous genomewide data. Proc Natl Acad Sci USA 101:2981–2986PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Barabasi AL (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113PubMedCrossRefGoogle Scholar
  82. 82.
    Kholodenko BN (2006) Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 7:165–176PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Schoeberl B, Eichler-Jonsson C, Gilles ED, Muller G (2002) Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat Biotechnol 20:370–375PubMedCrossRefGoogle Scholar
  84. 84.
    Wiley SH, Shvartsman Y, Lauffenburger DA (2003) Computational modeling of the EGF-receptor system: a paradigm for systems biology. Trends Cell Biol 13:43–50PubMedCrossRefGoogle Scholar
  85. 85.
    Chickarmane V, Troein C, Nuber UA, Sauro HM, Peterson C (2006) Transcriptional dynamics of the embryonic stem cell switch. PLoS Comput Biol 2(9):1080–1092CrossRefGoogle Scholar
  86. 86.
    Le Nov`ere N, Bornstein B, Broicher A, Courtot M, Donizelli M (2006) BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res 34:689–691CrossRefGoogle Scholar
  87. 87.
    Segel IH (1975) Enzyme kinetics. Wiley, New YorkGoogle Scholar
  88. 88.
    Cornish-Bowden A (1979) Fundamentals of enzyme kinetics. Butterworths, London and BostonGoogle Scholar
  89. 89.
    Mendes P, Kell D (1998) Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14:869–883PubMedCrossRefGoogle Scholar
  90. 90.
    Ko CL, Voit EO, Wang FS (2009) Estimating parameters for generalized mass action models with connectivity information. BMC Bioinform 10:140CrossRefGoogle Scholar
  91. 91.
    Moles CG, Mendes P, Banga JR (2003) Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res 13:2467–2474PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Fell DA (1992) Metabolic control analysis: a survey of its theoretical and experimental development. Biochem J 286(2):313–330PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Cascante M, Boros LG, Comin-Anduix B, Atauri P, Centelles JJ, Lee PWN (2002) Metabolic control analysis in drug discovery and disease. Nat Biotechnol 20:243–249PubMedCrossRefGoogle Scholar
  94. 94.
    Wu L, Wang W, van Winden WA, van Gulik WM, Heinjen JJ (2004) A new framework for the estimation of control parameters in metabolic pathways using lin-log kinetics. FEBS J 271:3348–3359CrossRefGoogle Scholar
  95. 95.
    Bergmann F, Sauro HM (2006) SBW – a modular framework for systems biology. In: Proceedings of the 38th conference on Winter simulation, Monterey, CA, USA, 1637–1645Google Scholar
  96. 96.
    Olivier BG, Rohwer JM, Hofmeyr HS (2005) Modeling cellular systems with PySCeS. Bioinformatics 21:560–561PubMedCrossRefGoogle Scholar
  97. 97.
    Hoops S, Sahle S, Gauges R, Lee C, Pahle J et al (2006) COPASI – a COmplex PAthway SImulator. Bioinformatics 22:3067–3074PubMedCrossRefGoogle Scholar
  98. 98.
    Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC et al (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4):524–531PubMedCrossRefGoogle Scholar
  99. 99.
    Bergmann F, Sauro HM (2008) Comparing simulation results of SBML capable simulators. Bioinformatics 24:1963–1965PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Vallabhajosyula RR, Sauro HM (2006) Complexity reduction in biochemical networks. In: Proceedings of the 38th conference on Winter simulation, Monterey, CA, USA, 1690–1697Google Scholar
  101. 101.
    Surovtsova I, Sable S, Pahle J, Kummer U (2006) Approaches to complexity reduction in a Systems Biology Research Environment. In: Proceedings of the 38th conference on Winter simulation, Monterey, CA, USA, 1683–1689Google Scholar
  102. 102.
    Sauro HM, Ingalls B (2004) Conservation analysis in biochemical networks: computational issues for software writers. Biophys Chem 109(1):1–15PubMedCrossRefGoogle Scholar
  103. 103.
    Vallabhajosyula RR, Chickarmane V, Sauro HM (2006) Conservation analysis of large biochemical networks. Bioinformatics 22:346–353PubMedCrossRefGoogle Scholar
  104. 104.
    Chickarmane V, Paladugu SR, Bergmann F, Sauro HM (2005) Bifurcation discovery tool. Bioinformatics 21(18):3688–3690PubMedCrossRefGoogle Scholar
  105. 105.
    Bergmann F, Vallabhajosyula RR, Sauro HM (2006) Computational tools for modeling protein networks. Curr Proteomics 3(3):181–197CrossRefGoogle Scholar
  106. 106.
    Varma A, Palsson BO (1994) Metabolic flux balancing: basic concepts, scientific and practical use. Nat Biotechnol 12:994–998CrossRefGoogle Scholar
  107. 107.
    Raman K, Chandra N (2009) Flux balance analysis of biological systems: applications and challenges. Brief Bioinform 10:435–449PubMedCrossRefGoogle Scholar
  108. 108.
    Segrè D, Vitkup D, Church GM (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci USA 99:15112–15117PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Shlomi T, Berkman O, Ruppin E (2005) Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proc Natl Acad Sci USA 102:7695–7700PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Kell D (2006) Systems biology, metabolic modeling and metabolomics in drug discovery and development. Drug Discov Today 11:1085–1092PubMedCrossRefGoogle Scholar
  111. 111.
    Sweetlove LJ, Last RL, Fernie AR (2003) Predictive metabolic engineering: a goal for systems biology. Plant Physiol 132:420–425PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Ballarini P, Guido R, Mazza T, Prandi D (2009) Taming the complexity of biological pathways through parallel computing. Brief Bioinform 10(3):278–288PubMedCrossRefGoogle Scholar
  113. 113.
    Arkin AP, Ross J, McAdams HH (1998) Stochastic kinetic analysis of developmental pathway bifurcation in Phage λ-infected Escherichia coli cells. Genetics 149:1633–1648PubMedPubMedCentralGoogle Scholar
  114. 114.
    Gillespie DT (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical species. J Comput Phys 22:403–434CrossRefGoogle Scholar
  115. 115.
    Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361CrossRefGoogle Scholar
  116. 116.
    van Kampen NG (1992) Stochastic processes in physics and chemistry. NHPL, Elsevier ScienceGoogle Scholar
  117. 117.
    Wilkinson DJ (2006) Stochastic modelling for systems biology. Chapman and Hall, CRC Press, Boca Raton, Florida, USAGoogle Scholar
  118. 118.
    Meng TC, Somani S, Dhar P (2004) Modeling and simulation of biological systems with stochasticity. In Silico Biol 4:293–309PubMedGoogle Scholar
  119. 119.
    Adalsteinsson D, McMillen D, Elston TC (2004) Biochemical network stochastic simulator (BioNetS): software for stochastic modeling of biochemical networks. BMC Bioinform 5:24CrossRefGoogle Scholar
  120. 120.
    Li H, Cao Y, Petzold LR, Gillespie DT (2008) Algorithms and software for stochastic simulation of biochemical reacting systems. Biotechnol Prog 24(1):56–61PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Ramsey S, Orrell D, Bolouri H (2005) Dizzy: stochastic simulation of large-scale genetic regulatory networks. J Bioinform Comput Biol 13:49Google Scholar
  122. 122.
    Ullah M, Schmidt H, Cho K-H, Wolkenhauer O (2006) Deterministic modeling and stochastic simulation of biochemical pathways using MATLAB. Syst Biol 153:53–60CrossRefGoogle Scholar
  123. 123.
    Vallabhajosyula RR, Sauro HM (2007) A stochastic simulation GUI for biochemical networks. Bioinformatics 23:1859–1861PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ravishankar R. Vallabhajosyula
    • 1
  • Alpan Raval
    • 1
    • 2
  1. 1.Keck Graduate Institute of Applied Life SciencesClaremontUSA
  2. 2.School of Mathematical SciencesClaremont Graduate UniversityClaremontUSA

Personalised recommendations