Advertisement

Computational Modelling of Kinase Signalling Cascades

  • David GilbertEmail author
  • Monika Heiner
  • Rainer Breitling
  • Richard Orton
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 661)

Abstract

In this chapter, we describe general methods used to create dynamic computational models of kinase signalling cascades, and tools to support this activity. We focus on the ordinary differential equation models, and show how these fit into a general framework of qualitative and quantitative (stochastic and continuous) models. The modelling we describe is part of the activity of BioModel engineering which provides a systematic approach for designing, constructing, and analyzing computational models of biological systems.

Key words

Computational modelling Ordinary differential equations Continuous Petri nets 

References

  1. 1.
    Gilbert, D.R., Breitling, R., Heiner, M., and Donaldson, R. (2009) An introduction to BioModel Engineering, illustrated for signal transduction pathways, in membrane computing. Springer LNCS, Springer, New York 5391 13–28.Google Scholar
  2. 2.
    Kolch, W., Calder, M., and Gilbert, D.R. (2005) When kinases meet mathematics: the systems biology of MAPK signalling. FEBS Lett 579(8), 1891–1895.PubMedCrossRefGoogle Scholar
  3. 3.
    Breitling, R., and Hoeller, D. (2005) Current challenges in quantitative modeling of epidermal growth factor signaling. FEBS Lett 579(28), 6289–6294. Wiley.CrossRefGoogle Scholar
  4. 4.
    Wiley, H.S., Shvartsman, S.Y., and Lauffenburger, D.A. (2003) Computational modeling of the EGF-receptor system: a paradigm for systems biology. Trends Cell Biol 13(1), 43–50.PubMedCrossRefGoogle Scholar
  5. 5.
    Orton, R.J., Sturm, O., Gormand, A.M., Kolch, W., and Gilbert, D.R. (2005) Computational modelling of the receptor-tyrosine-kinase-activated MAPK pathway. Biochem J 392(Pt 2), 249–261.PubMedGoogle Scholar
  6. 6.
    Butcher, J.C. (2003) Numerical methods for ordinary differential equations. Wiley, PhiladelphiaCrossRefGoogle Scholar
  7. 7.
    Brightman, F.A., and Fell, D.A. (2000) Differential feedback regulation of the MAPK cascade underlies the quantitative differences in EGF and NGF signalling in PC12 cells. FEBS Lett 482(3), 169–174.PubMedCrossRefGoogle Scholar
  8. 8.
    Schoeberl, B., Eichler-Jonsson, C., Gilles, E.D. et al. (2002) Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat Biotechnol 20(4), 370–375.PubMedCrossRefGoogle Scholar
  9. 9.
    Brown, K.S., Hill, C.C., Calero, G.A., Myers, C.R., Lee, K.H., Sethna, J.P., and Cerione, R.A. (2004) The statistical mechanics of complex signaling networks: nerve growth factor signaling. Phys Biol 1(3–4), 184–195.PubMedCrossRefGoogle Scholar
  10. 10.
    Orton, R.J., Sturm, O., Gormand, A., Kolch, W., and Gilbert, D.R. (2008) Computational modelling reveals feedback redundancy within the EGFR/ERK signalling pathway. IET Syst Biol 2(4), 173–183.PubMedCrossRefGoogle Scholar
  11. 11.
    Huang, C.Y., and Ferrell, J.E. Jr. (1996) Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc Natl Acad Sci U S A 93, 10078–10083.PubMedCrossRefGoogle Scholar
  12. 12.
    Burack, W.R., and Sturgill, T.W. (1997) The activating dual phosphorylation of MAPK by MEK is nonprocessive. Biochemistry 36, 5929–5933.PubMedCrossRefGoogle Scholar
  13. 13.
    Ferrell, J.E. Jr., and Bhatt, R.R. (1997) Mechanistic studies of the dual phosphorylation of mitogen-activated protein kinase. J Biol Chem 272, 19008–19016.PubMedCrossRefGoogle Scholar
  14. 14.
    Kholodenko, B.N. (2000) Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur J Biochem 267, 1583–1588.PubMedCrossRefGoogle Scholar
  15. 15.
    Resat, H., Ewald, J.A., Dixon, D.A., and Wiley, H.S. (2003) An integrated model of epidermal growth factor receptor trafficking and signal transduction. Biophys J 85, 730–743.PubMedCrossRefGoogle Scholar
  16. 16.
    Sasagawa, S., Ozaki, Y., Fujita, K., and Kuroda, S. (2005) Prediction and validation of the distinct dynamics of transient and sustained ERK activation. Nat Cell Biol 7, 365–373.PubMedCrossRefGoogle Scholar
  17. 17.
    Cho, K.H., Shin, S.Y., Kim, H.W., Wolkenhauer, O., McFerran, B., and Kolch, W. (2003) Mathematical modeling of the influence of RKIP on the ERK signaling pathway. LNCS 2602, 127–141.Google Scholar
  18. 18.
    Heiner, M., Uhrmacher, and Adelinde M. (Eds.) (2008).In: Proc. computational methods in systems biology. LNCS, Springer, New York 5307.Google Scholar
  19. 19.
    Breitling, R., Gilbert, D., Heiner, M., and Priami, C. (2009) Formal methods in molecular biology, Dagstuhl Seminar 09091 Proceedings.Google Scholar
  20. 20.
    Clarke, E.M., Grumberg, O., and Peled, D.A. (1999) Model checking. MIT Press, Cambridge.Google Scholar
  21. 21.
    Parker, D., Norman, G., and Kwiatkowska, M. (2006) PRISM 3.0.beta1 users’ guide, Cambridge University Press, Cambridge.Google Scholar
  22. 22.
    Calzone, L., Chabrier-Rivier, N., Fages, F., and Soliman, S. (2006) Machine learning biochemical networks from temporal logic properties. Trans on Computat Syst Biol VI, LNBI 4220, 68–94.CrossRefGoogle Scholar
  23. 23.
    Priami, C., Regev, A., Shapiro, E., and Silverman, W. (2001) Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Inform Process Lett 80(1), 25–31.CrossRefGoogle Scholar
  24. 24.
    Regev, A., Silverman, W., and Shapiro, E. (2001) Representation and simulation of biochemical processes using the π-calculus process algebra. Pac Symp Biocomput 6, 459–470.Google Scholar
  25. 25.
    Phillips A., and Cardelli L.A. (2005) Graphical representation for the stochastic pi-calculus. Trans on Computat Syst Biol VII, 4230, 123–152.CrossRefGoogle Scholar
  26. 26.
    Gillespie, D.T. (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem, 81(25), 2340–2361.CrossRefGoogle Scholar
  27. 27.
    Gilmore S, Hillston J. (1994) The PEPA workbench: a tool to support a process algebra-based approach to performance modelling. LNCS 794, 353–368.Google Scholar
  28. 28.
    Calder, M., Gilmore, S., and Hillston, J. (2006) Modelling the influence of RKIP on the ERK signalling pathway using the stochastic process algebra PEPA. Transactions on computational systems biology. Springer, New York 4230, 1–23.Google Scholar
  29. 29.
    Calder, M., Gilmore, S., and Hillston, J. (2005) Automatically deriving ODEs from process algebra models of signalling pathways. In: Proc. computational methods in systems biology 2005. 204–215.Google Scholar
  30. 30.
    Gilbert, D.R., Heiner, M., and Lehrack, S. (2007) A unifying framework for modelling and analysing biochemical pathways using Petri nets. In: Proc. computational methods in systems biology 2007. Springer LNCS/LNBI, Springer, New York 4695, 200–216.CrossRefGoogle Scholar
  31. 31.
    Heiner, M., Gilbert, D.R., and Donaldson, R. (2008) Petri nets for systems and synthetic biology in formal methods for systems biology. Springer LNCS, Springer, New York 5016, 215–264.CrossRefGoogle Scholar
  32. 32.
    Hucka, M., Finney, A., Sauro, H.M. et. al. (2003) The system biology markup language (SBML): a medium for representation and exchange of biochemical network models’. Bioinformatics 19(4), 524–531.PubMedCrossRefGoogle Scholar
  33. 33.
    BioNessie. A biochemical pathway simulation and analysis tool. University of Glasgow, http://www.bionessie.org
  34. 34.
    Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P., and Kummer, U. (2006) COPASI – a complex pathway simulator. Bioinformatics, 22, 3067–3074.PubMedCrossRefGoogle Scholar
  35. 35.
    Le Noviere, N. et al. (2006) Biomodels database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res 34(Database Issue), D689–D691.CrossRefGoogle Scholar
  36. 36.
    Shampine, L.F., and Reichelt, M.W. (1997) The matlab ode suite. SIAM J Sci Comput, 18, 1–22.CrossRefGoogle Scholar
  37. 37.
    Bergmann, F.T., and Sauro, H.M. (2006) SBW – a modular framework for systems biology. In Perrone, L. F., Lawson, B., Liu, J., and Wieland, F. P. (eds.).In: Proc. Winter Simulation Conference 2006, 1637–1645.Google Scholar
  38. 38.
    Ermentrout, B. Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students, (Software, Environments, and Tools 14). SIAM publishers, 2002 ISBN-13: 978-0-898715-06-4.Google Scholar
  39. 39.
    Funakashi, A., Matsuoka, Y., Jouraku, A., Kitano, H., and Kikuchi, N. (2006) Cell designer: a modelling too for biochemical networks, Proc Winter Simulation Conference 2006. 1707–1712.Google Scholar
  40. 40.
    Snoopy. A tool to design and animate hierarchical graphs. BTU Cottbus, CS Dep., http://www-dssz.informatik.tu-cottbus.de.
  41. 41.
    Charlie Website. A tool for the analysis of place/transition nets. BTU Cottbus, http://www-dssz.informatik.tu-cottbus.de/software/charlie/charlie.html.
  42. 42.
    Schwarick, M., and Heiner, M. (2009) CSL model checking of biochemical networks with interval decision diagrams. In: Proc. computational methods in systems biology 2009. Springer LNCS/LNBI, Springer, New York 5688, 296–312.CrossRefGoogle Scholar
  43. 43.
    Heiner, M., Schwarick, M., and Tovchigrechko, A. (2009) DSSZ-MC – a tool for symbolic analysis of extended Petri nets. In: Proc. Petri nets 2009. Springer LNCS, Springer, New York 5606, 323–332.Google Scholar
  44. 44.
    Berg, J.M., Tymoczko, J.L., and Stryer, L. (2009) Biochemistry. W H Freeman, New York.Google Scholar
  45. 45.
    Breitling, R., Gilbert, D.R., Heiner, M., and Orton, R. (2008) A structured approach for the engineering of biochemical network models, illustrated for signalling pathways. Brief Bioinform 9(5), 404–442.PubMedCrossRefGoogle Scholar
  46. 46.
    Gilbert, D.R., and Heiner, M. (2006) From Petri nets to differential equations – an integrative approach for biochemical network analysis. Springer LNCS, Springer, New York 4024, 181–200.Google Scholar
  47. 47.
    Klipp, E., and Liebermeister, W. (2006) Mathematical modeling of intracellular signaling pathways. BMC Neurosci 7(Suppl 1), S10.PubMedCrossRefGoogle Scholar
  48. 48.
    Orton, R.J., Sturm, O.E., Vyshemirsky, V., Calder, M., Gilbert, D.R., and Kolch, W. (2005) Computational modelling of the receptor-tyrosine-kinase-activated MAPK pathway. Biochem J 392, 249–261.PubMedCrossRefGoogle Scholar
  49. 49.
    Blüthgen, N., Bruggeman, F.J., Legewie, S., Herzel, H., Westerhoff, H.V., and Kholodenko, B.N. (2006) Effects of sequestration on signal transduction cascades. FEBS J 273(5), 895–906.PubMedCrossRefGoogle Scholar
  50. 50.
    Legewie, S., Schoeberl, B., Blüthgen, N., and Herzel, H. (2007) Competing docking interactions can bring about bistability in the MAPK cascade. Biophys J 93(7), 2279–2288.PubMedCrossRefGoogle Scholar
  51. 51.
    Orton, R., Sturm, O., Gormand, A., Kolch, W., and Gilbert, D.R. (2008) Computational modelling reveals feedback redundancy within the EGFR/ERK signalling pathway. IET Syst Biol 1(4), 173–183.CrossRefGoogle Scholar
  52. 52.
    Hornberg, J.J., Binder, B., Bruggeman, F.J., Schoeberl, B., Heinrich, R., and Hans, V.W. (2005) Control of MAPK signalling: from complexity to what really matters. Oncogene 24, 5533–5542.PubMedCrossRefGoogle Scholar
  53. 53.
    Moles, C.G., M., Mendes, P., and Bang, J.R. (2003) Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res 13, 2467–2474.PubMedCrossRefGoogle Scholar
  54. 54.
    Donaldson, R., and Gilbert, D.R. (2008) A model checking approach to the parameter estimation of biochemical pathways. In Proc. computational methods in systems biology. Springer LNCS, Springer, New York 5307, 269–287.CrossRefGoogle Scholar
  55. 55.
    Rizk, A., Batt, G., Fages, F., and Soliman, S. (2008) On a continuous degree of satisfaction of temporal logic formulae with applications to systems biology. In Proc. computational methods in systems biology. Springer LNCS, Springer, New York 5307, 251–268.Google Scholar
  56. 56.
    Cohen, A.M., and Hersh, R.W. (2005) A survey of current work in biomedical text mining. Brief Bioinform 6(1), 57–71.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Meida, LLC 2010

Authors and Affiliations

  • David Gilbert
    • 1
    Email author
  • Monika Heiner
    • 2
  • Rainer Breitling
    • 3
  • Richard Orton
    • 4
  1. 1.School of Information Science, Computing and MathematicsBrunel UniversityUxbridgeUK
  2. 2.Department of Computer ScienceBrandenburg University of TechnologyCottbusGermany
  3. 3.Groningen Bioinformatics Centre, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenHarenThe Netherlands
  4. 4.Institute of Comparative Medicine, Faculty of Veterinary MedicineUniversity of GlasgowGlasgowUK

Personalised recommendations