A “Molecular Evolution” Approach for Isolation of Intrinsically Active (MEK-Independent) MAP Kinases

  • Vered Levin-Salomon
  • Oded Livnah
  • David Engelberg
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 661)

Abstract

Mitogen-activated protein (MAP) kinases are a large family of enzymes composed of about four subfamilies, each containing several isoforms and splicing variants. Many MAP kinases are coexpressed in each eukaryotic cell and coactivated in response to various stimuli. It is, therefore, difficult to explore the specific downstream effects of each species of MAPK. Expression of an intrinsically active variant of a MAPK, while other MAPKs are not active, allows for tracking of a specific array of substrates, target genes, and biological/pathological effects corresponding to the expressed molecule. This chapter describes a method for obtaining such intrinsically active MAPKs. Because of the unique mode of MAPK activation, which is absolutely dependent on unconventional phosphorylation (on neighboring Thr + Tyr residues), a rational design of mutations that would render the kinase intrinsically active is currently unfeasible. Our method is based, therefore, on a “Molecular Evolution” approach that uses the power of yeast genetics and is unbiased toward the mutation sites. We describe in detail how to prepare a large population of randomly mutated molecules of the desired MAPK and how to screen this library in a yeast strain lacking the relevant MAPK kinase (MAPKK). The idea is to identify MAPK variants that are fulfilling all MAPK functions and allow growth of this strain – namely, MAPK molecules that function biologically in the complete absence of their upstream activator. We further describe the details of the “plasmid-loss” assay used for distinguishing between true positive and false positive clones. Finally, we report on a new yeast strain lacking four MAPKKs that could serve as a universal target for screening for active MAPK of all subfamilies.

Key words

MAP kinases Yeast Active mutants Molecular evolution Pbs2 Mkk1 Mkk2 Ste7 MAPKK knockout 

References

  1. 1.
    Pearson, G., Robinson, F., Beers Gibson, T., Xu, B. E., Karandikar, M., Berman, K., and Cobb, M. H. (2001) Endocr Rev 22, 153–83.PubMedCrossRefGoogle Scholar
  2. 2.
    Engelberg, D. (2004) Semin Cancer Biol 14, 271–82.PubMedCrossRefGoogle Scholar
  3. 3.
    Esteva, F. J., Sahin, A. A., Smith, T. L., Yang, Y., Pusztai, L., Nahta, R., Buchholz, T. A., Buzdar, A. U., Hortobagyi, G. N., and Bacus, S. S. (2004) Cancer 100, 499–506.PubMedCrossRefGoogle Scholar
  4. 4.
    Kuan, C. Y., and Burke, R. E. (2005) Curr Drug Targets CNS Neurol Disord 4, 63–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Kumar, S., Boehm, J., and Lee, J. C. (2003) Nat Rev Drug Discov 2, 717–26.PubMedCrossRefGoogle Scholar
  6. 6.
    Kyriakis, J. M., and Avruch, J. (2001) Physiol Rev 81, 807–69.PubMedGoogle Scholar
  7. 7.
    Cobb, M. H., and Goldsmith, E. J. (1995) J Biol Chem 270, 14843–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Yoon, S., and Seger, R. (2006) Growth Factors 24, 21–44.PubMedCrossRefGoogle Scholar
  9. 9.
    Yao, Y., Li, W., Wu, J., Germann, U. A., Su, M. S., Kuida, K., and Boucher, D. M. (2003) Proc Natl Acad Sci U S A 100, 12759–64.PubMedCrossRefGoogle Scholar
  10. 10.
    Yang, D. D., Conze, D., Whitmarsh, A. J., Barrett, T., Davis, R. J., Rincon, M., and Flavell, R. A. (1998) Immunity 9, 575–85.PubMedCrossRefGoogle Scholar
  11. 11.
    Tamura, K., Sudo, T., Senftleben, U., Dadak, A. M., Johnson, R., and Karin, M. (2000) Cell 102, 221–31.PubMedCrossRefGoogle Scholar
  12. 12.
    Sabapathy, K., Hu, Y., Kallunki, T., Schreiber, M., David, J. P., Jochum, W., Wagner, E. F., and Karin, M. (1999) Curr Biol 9, 116–25.PubMedCrossRefGoogle Scholar
  13. 13.
    Adams, R. H., Porras, A., Alonso, G., Jones, M., Vintersten, K., Panelli, S., Valladares, A., Perez, L., Klein, R., and Nebreda, A. R. (2000) Mol Cell 6, 109–16.PubMedGoogle Scholar
  14. 14.
    Pages, G., Guerin, S., Grall, D., Bonino, F., Smith, A., Anjuere, F., Auberger, P., and Pouyssegur, J. (1999) Science 286, 1374–7PubMedCrossRefGoogle Scholar
  15. 15.
    Garnett, M. J., and Marais, R. (2004) Cancer Cell 6, 313–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Thein, S. L., Oscier, D. G., Flint, J., and Wainscoat, J. S. (1986) Nature 321, 84–5.PubMedCrossRefGoogle Scholar
  17. 17.
    Hayward, N. K., Keegan, R., Nancarrow, D. J., Little, M. H., Smith, P. J., Gardiner, R. A., Seymour, G. J., Kidson, C., and Lavin, M. F. (1988) Hum Genet 78, 115–20.PubMedCrossRefGoogle Scholar
  18. 18.
    Mansour, S. J., Matten, W. T., Hermann, A. S., Candia, J. M., Rong, S., Fukasawa, K., Vande Woude, G. F., and Ahn, N. G. (1994) Science 265, 966–70.PubMedCrossRefGoogle Scholar
  19. 19.
    Cowley, S., Paterson, H., Kemp, P., and Marshall, C. J. (1994) Cell 77, 841–52.PubMedCrossRefGoogle Scholar
  20. 20.
    Marshall, C. J. (1995) Cell 80, 179–85.PubMedCrossRefGoogle Scholar
  21. 21.
    Canagarajah, B. J., Khokhlatchev, A., Cobb, M. H., and Goldsmith, E. J. (1997) Cell 90, 859–69.PubMedCrossRefGoogle Scholar
  22. 22.
    Askari, N., Diskin, R., Avitzour, M., Yaakov, G., Livnah, O., and Engelberg, D. (2006) Mol Cell Endocrinol 252, 231–40.PubMedCrossRefGoogle Scholar
  23. 23.
    Eijsink, V. G., Gaseidnes, S., Borchert, T. V., and van den Burg, B. (2005) Biomol Eng 22, 21–30.PubMedCrossRefGoogle Scholar
  24. 24.
    Tao, H., and Cornish, V. W. (2002) Curr Opin Chem Biol 6, 858–64.PubMedCrossRefGoogle Scholar
  25. 25.
    Matsuura, T., and Yomo, T. (2006) J Biosci Bioeng 101, 449–56.PubMedCrossRefGoogle Scholar
  26. 26.
    Levin-Salomon, V., Maayan, I., Avrahami-Moyal, L., Marbach, I., Livnah, O., and Engelberg, D. (2009) Biochem J 417, 331–40.PubMedCrossRefGoogle Scholar
  27. 27.
    Bell, M., Capone, R., Pashtan, I., Levitzki, A., and Engelberg, D. (2001) J Biol Chem 276, 25351–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Levin-Salomon, V., Kogan, K., Ahn, N. G., Livnah, O., and Engelberg, D. (2008) J Biol Chem 283, 34500–10.PubMedCrossRefGoogle Scholar
  29. 29.
    Silhavy, T. J., Berman, M. L., Enquist, L. W. (1984) Experiments with Gene Fusion, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 75–78.Google Scholar
  30. 30.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory, NY.Google Scholar

Copyright information

© Springer Science+Business Meida, LLC 2010

Authors and Affiliations

  • Vered Levin-Salomon
    • 1
  • Oded Livnah
    • 2
  • David Engelberg
    • 1
  1. 1.Department of Biological ChemistryHebrew UniversityJerusalemIsrael
  2. 2.Department of Biological Chemistry, The Wolfson Center for Applied Structural BiologyHebrew UniversityJerusalemIsrael

Personalised recommendations