Optical Mapping of Protein–DNA Complexes on Chromatin Fibers

  • Beth A. Sullivan
Part of the Methods in Molecular Biology book series (MIMB, volume 659)


Immunofluorescence (IF) and Fluorescence in situ Hybridization (FISH) are conventional methods used to study the structure and organization of metaphase chromosomes and interphase nuclei. Using these techniques, the locations of whole chromosome territories, chromatin subdomains, and specific DNA sequences can be evaluated at kilobase or megabase resolution. Even higher resolution of the spatial relationships of proteins and DNA can be achieved using combined IF-FISH on extended chromatin fibers. This method of optical mapping is a powerful system for localizing molecular probes along released chromatin fibers and visualizing small (<20 kb) or large (20–5,000 kb) chromosomal domains. Chromatin fiber analysis can fill the gaps in resolution between classical chromosome studies and molecular analyses, such as chromatin immunoprecipitation (ChIP) that evaluates chromatin organization at the level of single or multiple nucleosomes. In this chapter, the conceptual and technical aspects of chromatin fiber IF-FISH are presented, along with examples of successful applications.

Key words

Chromatin Immunofluorescence In situ hybridization Histone Centromere Heterochromatin Euchromatin 


  1. 1.
    Foster, H. A., and Bridger, J. M. (2005) The genome and the nucleus: a marriage made by evolution. Genome organisation and nuclear architecture. Chromosoma 114, 212–229.PubMedCrossRefGoogle Scholar
  2. 2.
    Parada, L., and Misteli, T. (2002) Chromosome positioning in the interphase nucleus. Trends Cell Biol 12, 425–432.PubMedCrossRefGoogle Scholar
  3. 3.
    Trask, B. J., Allen, S., Massa, H., Fertitta, A., Sachs, R., van den Engh, G., and Wu, M. (1993) Studies of metaphase and interphase chromosomes using fluorescence in situ hybridization. Cold Spring Harb Symp Quant Biol 58, 767–775.PubMedCrossRefGoogle Scholar
  4. 4.
    Brandriff, B., Gordon, L., and Trask, B. (1991) A new system for high-resolution DNA sequence mapping interphase pronuclei. Genomics 10, 75–82.PubMedCrossRefGoogle Scholar
  5. 5.
    Haaf, T., and Ward, D. C. (1994) Structural analysis of alpha-satellite DNA and centromere proteins using extended chromatin and chromosomes. Hum Mol Genet 3, 697–709.PubMedCrossRefGoogle Scholar
  6. 6.
    Michalet, X., Ekong, R., Fougerousse, F., Rousseaux, S., Schurra, C., Hornigold, N., van Slegtenhorst, M., Wolfe, J., Povey, S., Beckmann, J. S., and Bensimon, A. (1997) Dynamic molecular combing: stretching the whole human genome for high-resolution studies. Science 277, 1518–1523.PubMedCrossRefGoogle Scholar
  7. 7.
    Haaf, T., and Ward, D. C. (1994) High resolution ordering of YAC contigs using extended chromatin and chromosomes. Hum Mol Genet 3, 629–633.PubMedCrossRefGoogle Scholar
  8. 8.
    Sullivan, B. A., and Karpen, G. H. (2004) Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol 11, 1076–1083.PubMedCrossRefGoogle Scholar
  9. 9.
    Blower, M. D., Sullivan, B. A., and Karpen, G. H. (2002) Conserved organization of centromeric chromatin in flies and humans. Dev Cell 2, 319–330.PubMedCrossRefGoogle Scholar
  10. 10.
    Appleton, B., Bradley, A. P., and Wildermoth, M. (2005) in “DICTA 2005”, Vol. 1, IEEES Computer Society Press, Cairns, Australia.Google Scholar
  11. 11.
    Pasero, P., Bensimon, A., and Schwob, E. (2002) Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus. Genes Dev 16, 2479–2484.PubMedCrossRefGoogle Scholar
  12. 12.
    Haaf, T. (1996) High-resolution analysis of DNA replication in released chromatin fibers containing 5-bromodeoxyuridine. Biotechniques 21, 1050–1054.PubMedGoogle Scholar
  13. 13.
    Haaf, T., and Ward, D. C. (1995) Higher order nuclear structure in mammalian sperm revealed by in situ hybridization and extended chromatin fibers. Exp Cell Res 219, 604–611.PubMedCrossRefGoogle Scholar
  14. 14.
    Heng, H. H. (2000) Released chromatin or DNA fiber preparations for high-resolution fiber FISH. Methods Mol Biol 123, 69–81.PubMedGoogle Scholar
  15. 15.
    Haaf, T., and Ward, D. C. (1996) Inhibition of RNA polymerase II transcription causes chromatin decondensation, loss of nucleolar structure, and dispersion of chromosomal domains. Exp Cell Res 224, 163–173.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Molecular Genetics and Microbiology, Institute for Genome Sciences & PolicyDuke UniversityDurhamUSA

Personalised recommendations