Immunoelectron Microscopy of Cryofixed Freeze-Substituted Mammalian Tissue Culture Cells

  • Akira Sawaguchi
Part of the Methods in Molecular Biology book series (MIMB, volume 657)


Mammalian tissue cultured cells are widely used in cell biology research. Immunoelectron microscopy is a powerful technique to define the subcellular localization of targeted antigens in the cultured cells. Cryofixation is now generally accepted as the best initial fixation step, to preserve the cellular fine structures and antigenicity. This chapter covers the practical procedures for immunoelectron microscopy of cryofixed freeze-substituted mammalian tissue cultured cells processed by high-pressure freezing.

Key words

Immunogold labeling cryofixation freeze-substitution mammalian cultured cells lowicryl resin potassium permanganate 


  1. 1.
    Dahl, R. and Staehelin, L. A. (1989) High-pressure freezing for the preservation of biological structure: theory and practice. J. Electron Microsc. Tech. 13, 165–174.PubMedCrossRefGoogle Scholar
  2. 2.
    McDonald, K. L., Morphew, M., Verkade, P., and Müller-Reichert, T. (2007) Recent advances in high-pressure freezing: equipment- and specimen-loading methods. Methods Mol. Biol. 369, 143–173.PubMedCrossRefGoogle Scholar
  3. 3.
    Sawaguchi, A., McDonald, K. L., Karvar, S., and Forte, J. G. (2002) A new approach for high-pressure freezing of primary culture cells: the fine structure and stimulation-associated transformation of cultured rabbit gastric parietal cells. J. Microsc. 208, 158–166.PubMedCrossRefGoogle Scholar
  4. 4.
    Sawaguchi, A., Yao, X., Forte, J. G., and McDonald K. L. (2003) Direct attachment of cell suspensions to high pressure freezing specimen planchettes. J. Microsc. 212, 13–20.PubMedCrossRefGoogle Scholar
  5. 5.
    Sawaguchi, A., Ide, S., Goto, Y., Kawano, J., Oinuma, T., and Suganuma, T. (2001) A simple contrast enhancement by potassium permanganate oxidation for Lowicryl K4M ultrathin sections prepared by high pressure freezing/freeze substitution. J. Microsc. 201, 77–83.PubMedCrossRefGoogle Scholar
  6. 6.
    Kellenberger, E., Durrenberger, M., Villiger, W., Carlemalm, E., Wurtz, M. (1987) The efficiency of immunolabel on lowicryl sections compared to theoretical predictions. J. Histochem. Cytochem. 35, 959–969.PubMedCrossRefGoogle Scholar
  7. 7.
    Kramarcy, N. R. and Sealock, R. (1991) Commercial preparations of colloidal gold-antibody frequently contain free active antibody.J. Histochem. Cytochem. 39, 37–39.PubMedCrossRefGoogle Scholar
  8. 8.
    Slot, J. W. and Geuze, H. J. (1985) A new method of preparing gold probes for multiple-labeling cytochemistry. Eur. J. Cell Biol. 38, 87–93.PubMedGoogle Scholar
  9. 9.
    Frens, G. (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 241, 20–22.Google Scholar
  10. 10.
    De Mey, J., Moeremans, M., Geuens, R., Nuydens, R., and Brabander, M. D. (1981) High resolution light and electron microscopic localization of tubulin with the IGS (immuno gold staining) method. Cell Biol. Int. Rep. 5, 889–899.PubMedCrossRefGoogle Scholar
  11. 11.
    Griffiths, G., ed. (1993) Particle markers for immunoelectron microscopy. Fine Structure Immunocytochemistry. Springer-Verlag, Berlin, 279–306.Google Scholar
  12. 12.
    Kellenberger, E. (1991) The potential of cryofixation and freeze substitution: observations and theoretical considerations. J. Microsc. 161, 183–203.PubMedCrossRefGoogle Scholar
  13. 13.
    Bendayan, M. and Zollinger, M. (1983) Ultrastructural localization of antigenic sites on osmium-fixed tissues applying the protein A-gold technique. J. Histochem. Cytochem. 31, 101–109.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Akira Sawaguchi
    • 1
  1. 1.Department of Anatomy, Ultrastructural Cell Biology, Faculty of MedicineUniversity of MiyazakiMiyazakiJapan

Personalised recommendations