Advertisement

Luciferase and Green Fluorescent Protein Reporter Genes as Tools to Determine Protein Abundance and Intracellular Dynamics

  • András Viczián
  • Stefan Kircher
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 655)

Abstract

To get insight into molecular mechanisms governing plant development, the dynamics of abundance and cellular localisation of signalling components need to be understood. Luciferase and green fluorescent protein (GFP)-derived reporters are suitable markers to determine dynamic signalling processes in vivo. Here, analysis of phytochrome A (phyA) photoreceptor dynamics during early seedling development is used as an example of how in vitro and in vivo luciferase assays as well as GFP-imaging can be used to probe signalling dynamics.

Key words

Photomorphogenesis phytochrome photoreceptor green fluorescent protein (GFP) luciferase (LUC) epifluorescence microscopy protein degradation 

Notes

Acknowledgements

This work was supported by grants of the Deutsche Forschungsgemeinschaft (DFG) to S.K (SFB 592 and GRK 1305) and A.V. (SFB 592); and of the Alexander von Humboldt Foundation to A.V. (IV-UNG/1118446 STP).

References

  1. 1.
    Chen, M., Chory, J., and Fankhauser, C. (2004) Light signal transduction in higher plants. Annu Rev Genet 38, 87–117.PubMedCrossRefGoogle Scholar
  2. 2.
    Franklin, K. A. (2008) Shade avoidance. New Phytol 179, 930–944.PubMedCrossRefGoogle Scholar
  3. 3.
    Schäfer, E. and Nagy, F. (2006) Physiological basis of photomorphogenesis. In: Photomorphogenesis in Plants and Bacteria. Function and Signal Transduction Mechanisms, pp. 13–23. Schäfer, E., and Nagy, F., eds. Springer, New York, NY.CrossRefGoogle Scholar
  4. 4.
    Fankhauser, C. and Chory, J. (1997) Light control of plant development. Annu Rev Cell Dev Biol 13, 203–229.PubMedCrossRefGoogle Scholar
  5. 5.
    Hennig, L., Büche, C., Eichenberg, K., and Schäfer, E. (1999) Dynamic properties of endogenous phytochrome A in Arabidopsis seedlings. Plant Physiol 121, 571–577.PubMedCrossRefGoogle Scholar
  6. 6.
    Schäfer, E., Kircher, S., and Nagy, F. (2006) Intracellular localization of phytochromes. In: Photomorphogenesis in Plants and Bacteria. Function and Signal Transduction Mechanisms, pp. 155–170. Schäfer, E., and Nagy, F., eds. Springer, New York, NY.CrossRefGoogle Scholar
  7. 7.
    Hiltbrunner, A., Viczián, A., Bury, E., Tscheuschler, A., Kircher, S., Tóth, R., Honsberger, A., Nagy, F., Fankhauser, C., and Schäfer, E. (2005) Nuclear accumulation of the phytochrome A photoreceptor requires FHY1. Curr Biol 15, 2125–2130.PubMedCrossRefGoogle Scholar
  8. 8.
    Hiltbrunner, A., Tscheuschler, A., Viczián, A., Kunkel, T., Kircher, S., and Schäfer, E. (2006) FHY1 and FHL act together to mediate nuclear accumulation of the phytochrome A photoreceptor. Plant Cell Physiol 47, 1023–1034.PubMedCrossRefGoogle Scholar
  9. 9.
    Nakatsu, T., Ichiyama, S., Hiratake, J., Saldanha, A., Kobashi, N., Sakata, K., and Kato, H. (2006) Structural basis for the spectral difference in luciferase bioluminescence. Nature 440, 372–376.PubMedCrossRefGoogle Scholar
  10. 10.
    Wood, K. V. (2007) The bioluminescence advantage. Promega Notes 96, 3–5.Google Scholar
  11. 11.
    Ow, D. W., Wet, J. R., Helinski, D. R., Howell, S. H., Wood, K. V., and Deluca, M. (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234, 856–859.PubMedCrossRefGoogle Scholar
  12. 12.
    Van Leeuwen, W., Hagendoorn, M. J. M., Ruttink, T., Van Poecke, R., Linus, H. W., Van Der Plas, L. H. W., and Van Der Krol, A. R. (2000) The use of the luciferase reporter system for in planta gene expression studies. Plant Mol Biol Rep 18, 143–144.CrossRefGoogle Scholar
  13. 13.
    Sherf, B. A. and Wood, K. V. (1994) Firefly luciferase engineered for improved genetic reporting. Promega Notes 49, 14–21.Google Scholar
  14. 14.
    Millar, A. J., Short, S. R., Chua, N.-H., and Kay S. A. (1992) A novel circadian phenotype based on firefly luciferase expression in transgenic plants. Plant Cell 4, 1075–1084.PubMedGoogle Scholar
  15. 15.
    Millar, A. J., Short, S. R., Hiratsuka, K., Chua, N.-H., and Kay S. A. (1992) Firefly luciferase as a reporter of regulated gene expression in plants. Plant Mol Biol Rep 10, 324–337.CrossRefGoogle Scholar
  16. 16.
    Kay, S. A., Millar, A. J., Smith, K. W., Anderson, S. L., Brandes, C., and Hall, J. C. (1994) Video imaging of regulated firefly luciferase activity in transgenic plants and drosophila. Promega Notes 49, 22–27.Google Scholar
  17. 17.
    Southern, M. M., Brown, P. E., and Hall, A. (2006) Luciferases as reporter genes. In: Arabidopsis Protocols. MMB323, pp. 293–305. Salinas, J. and Sanchez-Serrano, J. J., eds. Humana Press, Totowa, NJ.Google Scholar
  18. 18.
    Hall, A. and Brown, P. (2007) Monitoring circadian rhythms in Arabidopsis thaliana using luciferase reporter genes. In: Methods in Molecular Biology, Circadian Rhythms: Reviews and Protocols Volume 362, pp. 143–152. Rosato, E., ed. Humana Press, Totowa, NJ.Google Scholar
  19. 19.
    Viczián, A., Kircher, S., Fejes, E., Millar, A.J., Schäfer, E., Kozma-Bognár, L., and Nagy, F. (2005) Functional characterization of phytochrome interacting factor 3 for the Arabidopsis thaliana circadian clockwork. Plant Cell Physiol 46, 1591–1602.PubMedCrossRefGoogle Scholar
  20. 20.
    Shen, H., Moon, J., and Huq, E. (2005) PIF1 is regulated by light-mediated degradation through the ubiquitin-26S proteasome pathway to optimize photomorphogenesis of seedlings in Arabidopsis. Plant J 44, 1023–1035.PubMedCrossRefGoogle Scholar
  21. 21.
    Brandizzi, F., Frizker, M., and Hawes C. (2002) A greener world: The revolution of plant bioimaging. Nat Mol Cell Biol 3, 520–530.CrossRefGoogle Scholar
  22. 22.
    Jach, G. (2006) Use of fluorescent proteins as reporters. In: Arabidopsis Protocols. MMB323. Salinas, J. and Sanchez-Serrano, J. J., eds. Humana Press, Totowa, NJ.Google Scholar
  23. 23.
    Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15, 473–497.CrossRefGoogle Scholar
  24. 24.
    Bradford, M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.PubMedCrossRefGoogle Scholar
  25. 25.
    Schäfer, E. (1977) Kunstlicht und Pflanzenzucht. In: Optische Strahlungsquellen. Albrecht, H., ed. Lexika-Verlag, Grafenau, Germany.Google Scholar
  26. 26.
    Rossner, M. and Yamada, K. M. (2004) What´s in a picture? The temptation of image manipulation. J Cell Biol 166, 11–15.PubMedCrossRefGoogle Scholar
  27. 27.
    Kircher, S., Kozma-Bognar, L., Kim, L., Ádám, E., Harter, K., Schäfer, E., and Nagy, F. (1999) Light quality-dependent nuclear import of the plant photoreceptors phytochrome A and B. Plant Cell 11, 1445–1456.PubMedGoogle Scholar
  28. 28.
    Kircher, S., Gil, P., Kozma-Bognar, L., Fejes, E., Bury, E., Adam, E., Schäfer, E., and Nagy, F. (2002) Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D and E is regulated differentially by light and exhibits a diurnal rhythm. Plant Cell 14, 1541–1555.PubMedCrossRefGoogle Scholar
  29. 29.
    Kim, L., Kircher, S., Toth, R., Adam, E., Schäfer, E., and Nagy, F. (2000) Light induced nuclear import of phytochrome-A: GFP fusion proteins is differentially regulated in transgenic tobacco and Arabidopsis. Plant J 22, 125–133.PubMedCrossRefGoogle Scholar
  30. 30.
    Holtzhauer, M. (2006) Basic Methods for the Biochemical Lab. Springer, New York, NY.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • András Viczián
    • 1
  • Stefan Kircher
    • 2
  1. 1.Institute of Plant BiologyHungarian Academy of Science, Biological Research CenterSzegedHungary
  2. 2.Freiburg im Breisgau, Baden- WürttembergAlbert-Ludwigs-University of FreiburgFreiburgGermany

Personalised recommendations