Prioritizing Candidate Genetic Modifiers of BRCA1 and BRCA2 Using a Combinatorial Analysis of Global Expression and Polymorphism Association Studies of Breast Cancer

  • Logan C. Walker
  • Amanda B. Spurdle
Part of the Methods in Molecular Biology book series (MIMB, volume 653)


Epidemiological evidence from different studies has shown that genes harboring sequence variations may modify breast cancer risk in BRCA1 and BRCA2 mutation carriers. Current attempts to identify genetic modifiers of BRCA1 and BRCA2 associated risk have focused on a candidate gene-based approach or the development of large genome-wide association studies. However, both methods have notable limitations. This chapter describes a novel approach for analyzing gene expression differences to prioritize candidate modifier genes for single nucleotide polymorphism association studies. The advantage that gives this strategy an edge over other candidate gene-based studies is its potential to identify candidate genes that interact with exogenous risk factors to cause or modify cancer, without detailed a priori knowledge of the molecular pathways involved.

Key words

Familial Breast cancer BRCA1 BRCA2 Genetic modifiers Microarray Irradiation Genome wide association study Lymphoblastoid cell lines 



We thank Nic Waddell, Anette Ten Haaf, Georgia Chenevix-Trench, Denis Moss and kConFab for their contribution in developing the protocols described here. We also thank Nic Waddell for critical reading of the manuscript. This work was supported by the Susan G. Komen Breast Cancer Foundation and the NHMRC.


  1. 1.
    Antoniou, A., Pharoah, P. D., Narod, S., Risch, H. A., Eyfjord, J. E., Hopper, J. L., et al. (2003) Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am. J. Hum. Genet. 72, 1117–1130.PubMedCrossRefGoogle Scholar
  2. 2.
    Simchoni, S., Friedman, E., Kaufman, B., Gershoni-Baruch, R., Orr-Urtreger, A., Kedar-Barnes, I., et al. (2006) Familial clustering of site-specific cancer risks associated with BRCA1 and BRCA2 mutations in the Ashkenazi Jewish population. Proc. Natl. Acad. Sci. U.S.A. 103, 3770–3774.PubMedCrossRefGoogle Scholar
  3. 3.
    Smith, A., Moran, A., Boyd, M. C., Bulman, M., Shenton, A., Smith, L., et al. (2007) Phenocopies in BRCA1 and BRCA2 families: evidence for modifier genes and implications for screening. J. Med. Genet. 44, 10–15.PubMedCrossRefGoogle Scholar
  4. 4.
    Dagan, E., Friedman, E., Paperna, T., Carmi, N., and Gershoni-Baruch, R. (2002) Androgen receptor CAG repeat length in Jewish Israeli women who are BRCA1/2 mutation carriers: association with breast/ovarian cancer phenotype. Eur. J. Hum. Genet. 10, 724–728.PubMedCrossRefGoogle Scholar
  5. 5.
    Hughes, D. J., Ginolhac, S. M., Coupier, I., Barjhoux, L., Gaborieau, V., Bressac-de-Paillerets, B., et al. (2005) Breast cancer risk in BRCA1 and BRCA2 mutation carriers and polyglutamine repeat length in the AIB1 gene. Int. J. Cancer 117, 230–233.PubMedCrossRefGoogle Scholar
  6. 6.
    Kadouri, L., Easton, D. F., Edwards, S., Hubert, A., Kote-Jarai, Z., Glaser, B., et al. (2001) CAG and GGC repeat polymorphisms in the androgen receptor gene and breast cancer susceptibility in BRCA1/2 carriers and non-carriers. Br. J. Cancer 85, 36–40.PubMedCrossRefGoogle Scholar
  7. 7.
    Kadouri, L., Kote-Jarai, Z., Easton, D. F., Hubert, A., Hamoudi, R., Glaser, B., et al. (2004) Polyglutamine repeat length in the AIB1 gene modifies breast cancer susceptibility in BRCA1 carriers. Int. J. Cancer 108, 399–403.PubMedCrossRefGoogle Scholar
  8. 8.
    Kadouri, L., Kote-Jarai, Z., Hubert, A., Durocher, F., Abeliovich, D., Glaser, B., et al. (2004) A single-nucleotide polymorphism in the RAD51 gene modifies breast cancer risk in BRCA2 carriers, but not in BRCA1 carriers or noncarriers. Br. J. Cancer 90, 2002–2005.PubMedCrossRefGoogle Scholar
  9. 9.
    Levy-Lahad, E., Lahad, A., Eisenberg, S., Dagan, E., Paperna, T., Kasinetz, L., et al. (2001) A single nucleotide polymorphism in the RAD51 gene modifies cancer risk in BRCA2 but not BRCA1 carriers. Proc. Natl. Acad. Sci. U.S.A. 98, 3232–3236.PubMedCrossRefGoogle Scholar
  10. 10.
    Wang, W. W., Spurdle, A. B., Kolachana, P., Bove, B., Modan, B., Ebbers, S. M., et al. (2001) A single nucleotide polymorphism in the 5′ untranslated region of RAD51 and risk of cancer among BRCA1/2 mutation carriers. Cancer Epidemiol. Biomarkers Prev. 10, 955–960.PubMedGoogle Scholar
  11. 11.
    Antoniou, A. C., Sinilnikova, O. M., Simard, J., Leone, M., Dumont, M., Neuhausen, S. L., et al. (2007) RAD51 135G → C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies. Am. J. Hum. Genet. 81, 1186–1200.PubMedCrossRefGoogle Scholar
  12. 12.
    Karran, P. (2000) DNA double strand break repair in mammalian cells. Curr. Opin. Genet. Dev. 10, 144–150.PubMedCrossRefGoogle Scholar
  13. 13.
    Shivji, M. K., Davies, O. R., Savill, J. M., Bates, D. L., Pellegrini, L., and Venkitaraman, A. R. (2006) A region of human BRCA2 containing multiple BRC repeats promotes RAD51-mediated strand exchange. Nucleic Acids Res. 34, 4000–4011.PubMedCrossRefGoogle Scholar
  14. 14.
    Broeks, A., Braaf, L. M., Huseinovic, A., Nooijen, A., Urbanus, J., Hogervorst, F. B., et al. (2007) Identification of women with an increased risk of developing radiation-induced breast cancer: a case only study. Breast Cancer Res. 9, R26.PubMedCrossRefGoogle Scholar
  15. 15.
    Easton, D. F., Pooley, K. A., Dunning, A. M., Pharoah, P. D., Thompson, D., Ballinger, D. G., et al. (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447, 1087–1093.PubMedCrossRefGoogle Scholar
  16. 16.
    Antoniou, A. C., Spurdle, A. B., Sinilnikova, O. M., Healey, S., Pooley, K. A., Schmutzler, R. K., et al. (2008) Common breast cancer-predisposition alleles are associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers. Am. J. Hum. Genet. 82, 937–948.PubMedCrossRefGoogle Scholar
  17. 17.
    Chenevix-Trench, G., Milne, R. L., Antoniou, A. C., Couch, F. J., Easton, D. F., and Goldgar, D. E. (2007) An international initiative to identify genetic modifiers of cancer risk in BRCA1 and BRCA2 mutation carriers: the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA). Breast Cancer Res. 9, 104.PubMedCrossRefGoogle Scholar
  18. 18.
    Walker, L. C., Waddell, N., Ten Haaf, A., Grimmond, S., and Spurdle, A. B. (2008) Use of expression data and the CGEMS genome-wide breast cancer association study to identify genes that may modify risk in BRCA1/2 mutation carriers. Breast Cancer Res. Treat. 112, 229–236.PubMedCrossRefGoogle Scholar
  19. 19.
    Johnson, W. E., Li, C., and Rabinovic, A. (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127.PubMedCrossRefGoogle Scholar
  20. 20.
    Jen, K. Y., and Cheung, V. G. (2003) Transcriptional response of lymphoblastoid cells to ionizing radiation. Genome Res. 13, 2092–2100.PubMedCrossRefGoogle Scholar
  21. 21.
    Bussey, K. J., Kane, D., Sunshine, M., Narasimhan, S., Nishizuka, S., Reinhold, W. C., et al. (2003) MatchMiner: a tool for batch navigation among gene and gene product identifiers. Genome Biol. 4, R27.PubMedCrossRefGoogle Scholar
  22. 22.
    Yin, E., Nelson, D. O., Coleman, M. A., Peterson, L. E., and Wyrobek, A. J. (2003) Gene expression changes in mouse brain after exposure to low-dose ionizing radiation. Int. J. Radiat. Biol. 79, 759–775.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Logan C. Walker
    • 1
  • Amanda B. Spurdle
    • 1
  1. 1.PO Royal Brisbane Hospital, Queensland Institute of Medical ResearchHerstonAustralia

Personalised recommendations