Autophagy in Disease

  • Dalibor Mijaljica
  • Mark Prescott
  • Rodney J. Devenish


Autophagy is a cellular quality control process by which cytoplasmic constituents including proteins, protein aggregates, organelles, and invading pathogens can be delivered to lysosomes for degradation. Autophagy is activated in response to changes in the internal status of the cell and/or changes in the extracellular environment. It is therefore essential for the maintenance of cellular homeostasis and for an efficient response to cellular stresses. As such autophagy has been implicated either in the pathogenesis, or response to a wide variety of diseases, bacterial, and viral infections, and ageing.

Key words

Autophagy Degradation Disease Pathophysiology Stress 


  1. 1.
    Huang J, Klionsky DJ (2007) Autophagy and human disease. Cell Cycle 6:1837–1849PubMedCrossRefGoogle Scholar
  2. 2.
    Eskelinen EL, Saftig P (2009) Autophagy: A lysosomal degradation pathway with a central role in health and disease. Biochim Biophys Acta 1793:664–673PubMedCrossRefGoogle Scholar
  3. 3.
    Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42PubMedCrossRefGoogle Scholar
  4. 4.
    Kundu M, Thompson CB (2008) Autophagy: Basic principles and relevance to disease. Annu Rev Pathol 3:427–455PubMedCrossRefGoogle Scholar
  5. 5.
    Colombo MI (2007) Autophagy: A pathogen driven process. IUBMB Life 59:238–242PubMedCrossRefGoogle Scholar
  6. 6.
    Mizushima N, Klionsky DJ (2007) Protein turnover via autophagy: Implications for metabolism. Annu Rev Nutr 27:19–40PubMedCrossRefGoogle Scholar
  7. 7.
    Cecconi F, Levine B (2008) The role of autophagy in mammalian development: Cell makeover rather than cell death. Dev Cell 15:344–357PubMedCrossRefGoogle Scholar
  8. 8.
    Hussey S, Terebiznik MR, Jones NL (2008) Autophagy: Healthy eating and self digestion for gastroenterologists. J Pediatr Gastroenterol Nutr 46:496–506PubMedCrossRefGoogle Scholar
  9. 9.
    Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075PubMedCrossRefGoogle Scholar
  10. 10.
    Uchiyama Y, Shibata M, Koike M, Yoshimura K, Sasaki M (2008) Autophagy-physiology and pathophysiology. Histochem Cell Biol 129:407–420PubMedCrossRefGoogle Scholar
  11. 11.
    van der Vaart A, Mari M, Reggiori F (2008) A picky eater: Exploring the mechanisms of selective autophagy in human pathologies. Traffic 9:281–289PubMedCrossRefGoogle Scholar
  12. 12.
    Yin XM, Ding WX, Gao W (2008) Autophagy in the liver. Hepatology 47:1773–1785PubMedCrossRefGoogle Scholar
  13. 13.
    Yu L, Strandberg L, Leonardo MJ (2008) The selectivity of autophagy and its role in cell death and survival. Autophagy 4:567–573PubMedGoogle Scholar
  14. 14.
    Todde V, Veenhuis M, van der Klei IJ (2009) Autophagy: Principles and significance in health and disease. Biochim Biophys Acta 1792:3–13PubMedCrossRefGoogle Scholar
  15. 15.
    Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, Griffiths G, Ktistakis NT (2008) Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182:685–701PubMedCrossRefGoogle Scholar
  16. 16.
    Klionsky DJ (2007) Autophagy: From phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8:931–937PubMedCrossRefGoogle Scholar
  17. 17.
    Xie Z, Klionsky DJ (2007) Autophagosome formation: Core machinery and adaptations. Nat Cell Biol 9:1102–1109PubMedCrossRefGoogle Scholar
  18. 18.
    Meijer WH, van der Klei IJ, Veenhuis M, Kiel JA (2007) ATG genes involved in non-selective autophagy are conserved from yeast to man, but the selective Cvt and pexophagy pathways also require organism-specific genes. Autophagy 3:106–116PubMedGoogle Scholar
  19. 19.
    Yorimitsu T, Klionsky DJ (2005) Autophagy: Molecular machinery for self-eating. Cell Death Differ 12(Suppl 2):1542–1552PubMedCrossRefGoogle Scholar
  20. 20.
    Suzuki K, Ohsumi Y (2007) Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett 581:2156–2161PubMedCrossRefGoogle Scholar
  21. 21.
    Yang YP, Liang ZQ, Gu ZL, Qin ZH (2005) Molecular mechanism and regulation of autophagy. Acta Pharmacol Sin 26:1421–1434PubMedCrossRefGoogle Scholar
  22. 22.
    Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484PubMedCrossRefGoogle Scholar
  23. 23.
    Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, Myer VE, MacKeigan JP, Porter JA, Wang YK, Cantley LC, Finan PM, Murphy LO (2009) Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136:521–534PubMedCrossRefGoogle Scholar
  24. 24.
    Kadowaki M, Karim MR, Carpi A, Miotto G (2006) Nutrient control of macroautophagy in mammalian cells. Mol Aspects Med 27:426–443PubMedCrossRefGoogle Scholar
  25. 25.
    Meijer AJ, Codogno P (2006) Signalling and autophagy regulation in health, aging and disease. Mol Aspects Med 27:411–425PubMedCrossRefGoogle Scholar
  26. 26.
    Dunn WA Jr, Cregg JM, Kiel JA, van der Klei IJ, Oku M, Sakai Y, Sibirny AA, Stasyk OV, Veenhuis M (2005) Pexophagy: The selective autophagy of peroxisomes. Autophagy 1:75–83PubMedCrossRefGoogle Scholar
  27. 27.
    Krick R, Muehe Y, Prick T, Bremer S, Schlotterhose P, Eskelinen EL, Millen J, Goldfarb DS, Thumm M (2008) Piecemeal microautophagy of the nucleus requires the core macroautophagy genes. Mol Biol Cell 19:4492–4505PubMedCrossRefGoogle Scholar
  28. 28.
    Kiššová I, Salin B, Schaeffer J, Bhatia S, Manon S, Camougrand N (2007) Selective and non-selective autophagic degradation of mitochondria in yeast. Autophagy 3:329–336PubMedGoogle Scholar
  29. 29.
    Dubouloz F, Deloche O, Wanke V, Cameroni E, De Virgilio C (2005) The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol Cell 19:15–26PubMedCrossRefGoogle Scholar
  30. 30.
    Uttenweiler A, Schwarz H, Neumann H, Mayer A (2007) The vacuolar transporter chaperone (VTC) complex is required for microautophagy. Mol Biol Cell 18:166–175PubMedCrossRefGoogle Scholar
  31. 31.
    Kaushik S, Cuervo AM (2008) Chaperone-mediated autophagy. Meth Mol Biol 445:227–244CrossRefGoogle Scholar
  32. 32.
    Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402:672–676PubMedCrossRefGoogle Scholar
  33. 33.
    Jin S (2006) Autophagy, mitochondrial quality control, and oncogenesis. Autophagy 2:80–84PubMedGoogle Scholar
  34. 34.
    Mathew R, Karantza-Wadsworth V, White E (2007) Role of autophagy in cancer. Nat Rev Cancer 7:961–967PubMedCrossRefGoogle Scholar
  35. 35.
    Kroemer G, Levine B (2008) Autophagic cell death: The story of a misnomer. Nat Rev Mol Cell Biol 9:1004–1010PubMedCrossRefGoogle Scholar
  36. 36.
    Bialik S, Kimchi A (2008) Autophagy and tumor suppression: Recent advances in understanding the link between autophagic cell death pathways and tumor development. Adv Exp Med Biol 615:177–200PubMedCrossRefGoogle Scholar
  37. 37.
    Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884PubMedCrossRefGoogle Scholar
  38. 38.
    Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889PubMedCrossRefGoogle Scholar
  39. 39.
    Ventruti A, Cuervo AM (2007) Autophagy and neurodegeneration. Curr Neurol Neurosci Rep 7:443–451PubMedCrossRefGoogle Scholar
  40. 40.
    Winslow AR, Rubinsztein DC (2008) Autophagy in neurodegeneration and development. Biochim Biophys Acta 1782:723–729PubMedCrossRefGoogle Scholar
  41. 41.
    Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, Lee JH, Mohan PS, Mercken M, Farmery MR, Tjernberg LO, Jiang Y, Duff K, Uchiyama Y, Näslund J, Mathews PM, Cataldo AM, Nixon RA (2005) Macroautophagy-a novel Beta-amyloid peptide-generating pathway activated in Alzheimer’s disease. J Cell Biol 171:87–98PubMedCrossRefGoogle Scholar
  42. 42.
    Koike M, Shibata M, Tadakoshi M, Gotoh K, Komatsu M, Waguri S, Kawahara N, Kuida K, Nagata S, Kominami E, Tanaka K, Uchiyama Y (2008) Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol 172:454–469PubMedCrossRefGoogle Scholar
  43. 43.
    Yue Z, Friedman L, Komatsu M, Tanaka K (2009) The cellular pathways of neuronal autophagy and their implication in neurodegenerative diseases. Biochim Biophys Acta 1793:1496–1507 Google Scholar
  44. 44.
    Williams A, Jahreiss L, Sarkar S, Saiki S, Menzies FM, Ravikumar B, Rubinsztein DC (2006) Aggregate-prone proteins are cleared from the cytosol by autophagy: Therapeutic implications. Curr Top Dev Biol 76:89–101PubMedCrossRefGoogle Scholar
  45. 45.
    Nishino I (2003) Autophagic vacuolar myopathies. Curr Neurol Neurosci Rep 3:64–69PubMedCrossRefGoogle Scholar
  46. 46.
    Nishino I, Fu J, Tanji K, Yamada T, Shimojo S, Koori T, Mora M, Riggs JE, Oh SJ, Koga Y, Sue CM, Yamamoto A, Murakami N, Shanske S, Byrne E, Bonilla E, Nonaka I, DiMauro S, Hirano M (2000) Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 406:906–910PubMedCrossRefGoogle Scholar
  47. 47.
    Martinet W, Knaapen MW, Kockx MM, De Meyer GR (2007) Autophagy in cardiovascular disease. Trends Mol Med 13:482–491PubMedCrossRefGoogle Scholar
  48. 48.
    Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M, Nishida K, Hori M, Mizushima N, Otsu K (2007) The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 13:619–624PubMedCrossRefGoogle Scholar
  49. 49.
    Martinet W, De Meyer GR (2009) Autophagy in atherosclerosis: A cell survival and death phenomenon with therapeutic potential. Circ Res 104:304–317PubMedCrossRefGoogle Scholar
  50. 50.
    Gannagé M, Münz C (2009) Macroauto­phagy in immunity and tolerance. Traffic 10:616–620 Google Scholar
  51. 51.
    Münz C (2009) Enhancing immunity through autophagy. Annu Rev Immunol 27:423–449PubMedCrossRefGoogle Scholar
  52. 52.
    Levine B, Deretic V (2007) Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol 7:767–777PubMedCrossRefGoogle Scholar
  53. 53.
    Orvedahl A, Levine B (2009) Eating the enemy within: Autophagy in infectious diseases. Cell Death Differ 16:57–69PubMedCrossRefGoogle Scholar
  54. 54.
    Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, Huse K, Albrecht M, Mayr G, De La Vega FM, Briggs J, Günther S, Prescott NJ, Onnie CM, Häsler R, Sipos B, Fölsch UR, Lengauer T, Platzer M, Mathew CG, Krawczak M, Schreiber S (2007) A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 39:207–211PubMedCrossRefGoogle Scholar
  55. 55.
    Massey DC, Parkes M (2007) Genome-wide association scanning highlights two autophagy genes, ATG16L1 and IRGM, as being significantly associated with Crohn’s disease. Autophagy 3:649–651PubMedGoogle Scholar
  56. 56.
    Kuballa P, Huett A, Rioux JD, Daly MJ, Xavier RJ (2008) Impaired autophagy of an intracellular pathogen induced by a Crohn’s disease associated ATG16L1 variant. PLoS ONE 3:e3391PubMedCrossRefGoogle Scholar
  57. 57.
    Zhang H, Massey D, Tremelling M, Parkes M (2008) Genetics of inflammatory bowel disease: Clues to pathogenesis. Br Med Bull 87:17–30PubMedCrossRefGoogle Scholar
  58. 58.
    Meijer AJ, Codogno P (2008) Autophagy: A sweet process in diabetes. Cell Metab 8:275–276PubMedCrossRefGoogle Scholar
  59. 59.
    Codogno P, Meijer AJ (2005) Autophagy and signaling: Their role in cell survival and cell death. Cell Death Differ 12(Suppl 2):1509–1518PubMedCrossRefGoogle Scholar
  60. 60.
    Russell SJ, Kahn CR (2007) Endocrine regulation of ageing. Nat Rev Mol Cell Biol 8:681–91PubMedCrossRefGoogle Scholar
  61. 61.
    Kaniuk NA, Kiraly M, Bates H, Vranic M, Volchuk A, Brumell JH (2007) Ubiquitinated-protein aggregates form in pancreatic beta-cells during diabetes-induced oxidative stress and are regulated by autophagy. Diabetes 56:930–939PubMedCrossRefGoogle Scholar
  62. 62.
    Jung HS, Chung KW, Won Kim J, Kim J, Komatsu M, Tanaka K, Nguyen YH, Kang TM, Yoon KH, Kim JW, Jeong YT, Han MS, Lee MK, Kim KW, Shin J, Lee MS (2008) Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab 8:318–324PubMedCrossRefGoogle Scholar
  63. 63.
    Ebato C, Uchida T, Arakawa M, Komatsu M, Ueno T, Komiya K, Azuma K, Hirose T, Tanaka K, Kominami E, Kawamori R, Fujitani Y, Watada H (2008) Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab 8:325–332PubMedCrossRefGoogle Scholar
  64. 64.
    Cuervo AM (2004) Autophagy: In sickness and in health. Trends Cell Biol 14:70–77PubMedCrossRefGoogle Scholar
  65. 65.
    Yen WL, Klionsky DJ (2008) How to live long and prosper: Autophagy, mitochondria, and aging. Physiology (Bethesda) 23:248–262CrossRefGoogle Scholar
  66. 66.
    Cuervo AM (2008) Autophagy and aging: Keeping that old broom working. Trends Genet 24:604–612PubMedCrossRefGoogle Scholar
  67. 67.
    Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ (2007) Potential therapeutic applications of autophagy. Nat Rev Drug Discov 6:304–312PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Dalibor Mijaljica
    • 1
  • Mark Prescott
    • 1
  • Rodney J. Devenish
    • 2
  1. 1.Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
  2. 2.Department of Biochemistry and Molecular Biology and the ARC Centre of Excellence in Structural and Functional Microbial GenomicsMonash UniversityClaytonAustralia

Personalised recommendations